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Context of this talk

Goal: "design an Al model that is performant and general”

® Performant: “depth” of intelligence
® General:"breath” of intelligence
o \We'll not use the term “"AGI"” as it's often a marketing term

® Care about “capabilities” as a function of an Al model — we don't
care about “humanlike” or “consciousness”
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If we are not there yet after 5 years, why would that be?



What would hold us back!?

1. Scaling laws don’t extend as continuously as once expectea

2. Scaling laws do extend continuously, but are prohibitively expensive (cost,
power, environmental harms)

3. Data scaling laws slow down because high-value datasets are proprietary
and fragmented (no single entity owns all the data)

4. Non-technical limits, e.g., policy, regulation, and geopolitical tensions

Claim: NLP/ML researchers should work on solutions that matter
b+ years from now, not the next 5 months.



What would make us overcome these barriers?
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Current approaches

Q: What's the capital city of California? —>-— A: Sacramento




Claim:We Should Re-Use the Data
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Goal: Establish new sca
repeated data & synthetical

Wikipedia

I[EEE Frank Rosenblatt Award

Source Document

® Muennighoft et al. 2023. "Scaling Data-Constrained Language Models”
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® Kim et al. 2025. "Pre-training under infinite compute”
® Lin etal 2025. "Learning Facts at Scale with Active Reading"
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Claim:We Should Re-Use the Data
as Much as Possible

“[R]etrieval acts as a ~5x compute multiplier versus pre-training alone.”
— Fang et al. 2025
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® Shao et al. 2024. "Scaling Retrieval-Based Language Models with a Trillion-Token Datastore”
® |yuetal 2025. "Frustratingly Simple Retrieval Improves Challenging, Reasoning-Intensive Benchmarks”
® Fang et al. 2025. "Reusing Pre-Training Data at Test Time is a Compute Multiplier"



Claim:We Should Re-Use the Data
as Much as Possible
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Trends in Al Always Have Shifted Toward
More End-to-End
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Claim: We're actually not sufficiently end-to-end.
Being more end-to-end will improve scaling laws.



How to Make it Even More End-to-End?
(1) Removing Stages in RAG
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Current RAG End-to-end RAG

(More end-to-end & more suitable when a task requires
reasoning across a large chunk from the corpus)

® [ee etal. 2024. "Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More?”
® Gupta et al. 2025. "Scalable In-context Ranking with Generative Models"



How to Make it Even More End-to-End?

Word-level

Subword-level
(Current dominant)

Char-level

Byte-level

(2) Removing Tokenizer

Berkeley||is/|a||city| |on the||eastern| |shore| |of||San |[Francisco

Bay

Ber keley|is |a||city |on||the||least ern|shore| of||San| Fran|cisco

Bay

® Yu et al. 2023. "MEGABYTE: Predicting Million-byte Sequences with Multiscale Transtormers”
® Pagnoni et al. 2025. "Byte Latent Transformer: Patches Scale Better Than Tokens”




How to Make it Even More End-to-End!?
(3) Removing Text Extraction (OCR)

/ Standard Retrieval %31 0.66 NDCG@5 \
Text-only LMs (GPT, LLaMA) /ot ‘ onine
The quick brown fox jumps o cl e ﬁ
over the lazy dog o e

Screenshot LMs (Donut, Pix2Struct) s © 22ms squery

E A R \‘“.\'l’\ AFRANF YR AR AN 7" :‘ o ' . . . .

iulmps 01ver th‘: lazy dog / CO|Pall (ourS) ./;:i 0-81 NDCG@5 Slmllarlty SSSSS \
Artcle — ffl Vision LLM ’ \ E 0 () I
I w —_— | T mmeessssssssesee=y I I

E— ' = A~ 1 o

From Whgesa the b0 orcyciope S "‘-l: - : \ : E : IMS‘M( ’H) I<— <
SR N W R Screenshot sEsy |5 s | T
sy dog’ iy o Exgluniarguags > i N | B + |7 LLm
oD S it | M - e - e eIy |
e oo of Do aphatet The phine & -__::_ _:_, N : . | ﬁ
commanty (e for touh g prictcs. gle Sl cu RS R ' 1 EN” MaxSlm( y ) l< ViTs?
WEING Ty Wil s and onrouted | ‘:_:--- ;,—;.: e j ) 1 > I I
SeyDOArON. DMy xamples of rts, s e PN J L
NG SN 3 PEACABONS | TWONYG tex ‘ : proj. — : proj. ‘ NyxD _D , pl;j.
Whers the de of &l letiars in e aphabet  Pwases (mage versed r K@ 0.39s/page Tt tmmmssssssssssssb R™ R @ 30ms / query /
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Data is the #| Key Driver

® Currently, the “winner” is whoever has the largest, highest-quality data.

® \With rising competition and data running out, we can’t simply rely on
this paradigm.

® Everyone will have their own proprietary data, and we can’t assume a
single entity will own all the best data (nor is that desirable).

Claim: We need a new architecture that enables "collaborative”
development of an AL model.

Current training methods don't support this (they require direct, end-
to-end access to all data throughout training).



A “Hub” Model for Collaborative Al Training
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Colin Raftel. 2021. "A Call to Build Models Like We Build Open-Source Software”
Shi et al. 2025. "FlexOlmo: Open Language Models for Flexible Data Use"
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A “Hub” Model for Collaborative Al Training
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"A Call to Build Models Like We Build Open-Source Software”

"FlexOlmo: Open Language Models for Flexible Data Use"
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Prerequisite: How to Build a Base Model
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Colin Raftel. 2021. "A Call to Build Models Like We Build Open-Source Software”
Shi et al. 2025. "FlexOlmo: Open Language Models for Flexible Data Use"
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Summary

Focus on Problems in 2030+ (assuming we didn’t achieve AGI) —
imited scaling laws, data running out, data being proprietary and fragmented

| earning from limited

data

® [or breaking scaling laws
imits, and making better
use of available data

® [Example ideas: Repeating
data, synthetic data,
retrieval, & test-time
training

following the “end-to-end

More end-to-end

~or improving scaling laws,

1

trends

Example ideas: Removing
stages in RAG, removing
tokenizer, removing text
extraction (OCR)

Breaking end-to-end

-or breaking data scaling
aws limits, and broadening
the usable data

Example ideas: A "Hub”
model through Mixture-of-
Experts




Thank you for listening!
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