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Large language models (LMs) such as ChatGPT have revolutionized natural language processing and

artificial intelligence more broadly. In this thesis, I discuss my research on understanding and advancing

these models, centered around how they use the very large text corpora they are trained on. First, I describe

our efforts to understand how these models learn to perform new tasks after training, demonstrating that their

so-called in context learning capabilities are almost entirely determined by what they learn from the training

data. Next, I introduce a new class of LMs—nonparametric LMs—that repurpose this training data as a data

store from which they retrieve information for improved accuracy and updatability. I describe my work on

establishing the foundations of such models, including one of the first broadly used neural retrieval models

and an approach that simplifies a traditional, two-stage pipeline into one. I also discuss how nonparametric

models open up new avenues for responsible data use, e.g., by segregating permissive and copyrighted text

and using them differently. Finally, I envision the next generation of LMs we should build, focusing on

efficient scaling, improved factuality, and decentralization.
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Chapter 1

Introduction

Figure 1.1: Language models can perform a range of NLP tasks—e.g., sentiment analysis, question answering,
and machine translation—by casting each task into a sentence completion problem.

Creating a general-purpose natural language processing (NLP) model, which addresses a wide range of

tasks involving human language, has been a long-standing challenge in the field of artificial intelligence (AI).

Such models must be able to handle a broad spectrum of tasks, including:

• Identifying whether a given movie review is positive or negative (sentiment analysis)

• Answering user questions about the world (question answering)

• Translating documents from one language to another (machine translation)

• Writing summaries of extensive texts, such as a hundred-page book (text summarization)

• Assisting with email composition

This ambitious goal has been a long-standing challenge, with foundational studies dating back to the work of

Turing [1980]; Winograd [1971]; Lockman and Klappholz [1983]; McCarthy et al. [2006].

In recent years, significant progress has been made with the development of large language models (LMs),

which now demonstrate the ability to perform many NLP tasks. These models can now successfully classify

sentiment, answer questions, and assist with writing tasks. Their key innovation—in fact, an embarrassingly
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simple one—is to train a deep neural network with billions of parameters on extensive text datasets using a

self-supervised objective. This objective typically involves predicting the next word given a text prefix or

filling in missing words in a sentence. It does not require human-labeled data, allowing training data to scale

to the size of the entire web. This approach has yielded models with over 100 billion parameters trained on

over 1 trillion tokens [Brown et al., 2020a; Hoffmann et al., 2022; Chowdhery et al., 2022]. During testing, an

arbitrary NLP task can be cast into a sentence completion problem, allowing next-token prediction models to

naturally perform the task (Figure 1.1). Earlier, language models required fine-tuning on specific downstream

datasets [Peters et al., 2018; Devlin et al., 2019]. However, this approach has shifted towards prompting, i.e.,

performing an unseen task at test time with no explicit parameter updates [Brown et al., 2020a]. This method

offers several benefits, including a user-friendly interface that lets non-experts to perform new tasks easily we

asll we significant enhancements in model generalization. Since 2022, these models have been extensively

integrated into various production systems, including ChatGPT, Claud, and Bard.

It is great.
I love the design.
The battery life can 't be very long.
Cheaper than an iPod.

It is great.
It is terrible.
_________

LM It is great.
I love the design.
The battery life can 't be very long.
Cheaper than an iPod.

It is terrible.
It is great.
_________

LM
(a) (b)

Figure 1.2: (a) In-context learning (ICL) with k=2, with correctly paired labels. (b) ICL with random labels.
Our work shows that ICL performs the task equally well [Min et al., 2022c; Wang et al., 2023a; Lyu et al.,
2023].

The central theme of this dissertation addresses ways to better understand how these models work and

ways to rethink how the next generation of models should use data at scale. My thesis is outlined as follows.

Chapter 2: Understanding Current Language Models. Despite their significant success, LMs remain

black boxes, difficult to understand and characterize. My research (a) improves understanding of how the

current class of LMs perform tasks, and (b) shows how far they can perform these tasks.

We focus on in-context learning (ICL): given labeled examples (x1, y1), · · · , (xk, yk), ICL concatenates

them with a new input x into a single sequence that is fed into the LM to make a prediction (Figure 1.2(a)).

ICL works well for many different tasks and was generally believed to allow an LM to acquire new abilities

on the fly without any training. Our work opens up a new line of research by challenging this widespread

belief, demystifying how LMs actually perform new tasks via ICL. For instance, we show that LMs accurately

perform tasks with ICL even when the given examples are incorrect, e.g., yi is a random label paired

independently from xi in classification or multi-choice tasks (Figure 1.2(b); [Min et al., 2022c; Lyu et al.,

2023]), or yi is an incorrect response to xi in reasoning tasks [Wang et al., 2023a]. This indicates that LMs

perform tasks by relying on patterns present in the LM training data, which can be activated via a specific way,

rather than obtaining a new ability on the fly from correctly-paired examples. By challenging a widely held

belief about ICL, our work has led a significant body of follow-up work discovering unexpected behaviors of
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LMs, and has also served as an inspiration for the development of better models [Madaan and Yazdanbakhsh,

2022; Wei et al., 2023b; Halawi et al., 2023; Jang et al., 2022b; Wies et al., 2023; Lampinen et al., 2022; Pan

et al., 2023; Kim et al., 2022; Schaeffer et al., 2023; Zhang et al., 2023b; She et al., 2023; Turpin et al., 2023].

Using insights from our analysis, we also improve LMs by better activating patterns present during

training [Khashabi et al., 2020; Min et al., 2022b,a; Lyu et al., 2023]. Notably, we were among the first to

further train LMs with a multi-task objective on a large collection of tasks (e.g., sentiment analysis, topic

classification, and question answering) and evaluate it on a new task during inference (e.g., hate speech

detection) [Khashabi et al., 2020; Min et al., 2022b]. For instance, we train LMs to condition on k task

examples (as ICL typically does) during training, and then at inference time, condition on new examples

about the given task [Min et al., 2022b]. This enables LMs to better learn to use the given examples in order

to activate required patterns. Moreover, our approach can be combined with other kinds of information about

the task, e.g., a natural language description. This approach has been adopted as a standard practice for

state-of-the-art LM alignment pipelines [Chung et al., 2022; Ivison et al., 2023].

Chapter 3: Nonparametric Language Models. Our research established the foundation for nonparametric

LMs, a new class of LMs that include not only learned parameters but also a datastore—a massive collection

of raw text documents. During inference, these models can identify relevant text from the datastore and

reason with it, unlike conventional models that must remember every relevant detail from the training set.

Such models are not only more performant but also more flexible by design, as the datastore can be altered at

any time, e.g., to include up-to-date information, without additional training.

We develop LMs that operate in two stages—(1) retrieving small amount of text from a datastore, and

(2) feeding it to the LM as an additional input—called retrieval-augmented LMs (Figure 3.1 (a)). While

the approach is highly intuitive and resembles how humans use a search engine to find relevant information

and process it, it is challenging to efficiently train a neural model to reason with a large-scale datastore. We

introduced a series of first retrieval-augmented models that addressed these challenges and has subsequently

prompted active follow-up research [Karpukhin et al., 2020; Min et al., 2019b, 2021a; Shi et al., 2024b,a].

One notable model, Dense Passage Retrieval (DPR) [Karpukhin et al., 2020], opened up a new era in

neural retrieval by showing its promises over traditional, lexical matching-based retrieval. This was done by

introducing a new contrastive objective that helps the model distinguish relevant text against irrelevant-but-

distracting text. We also improved the second stage of retrieval augmentation by training the LM to condition

on a set of relevant documents, thereby making better use of text retrieved from a datastore [Shi et al., 2024a].

Altogether, this approach improves performance on a wide range of tasks (e.g., providing more factual text)

and handles rarely seen concepts and facts much better, even when compared to state-of-the-art commercial

LMs like GPT-3 [Shi et al., 2024b]. They are also easily updated, as we showed for the first time [Min et al.,

2021a], and significantly reduce the model size.
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LM
Retrieval …“Avada Kedavra!” A 

jet of green light issued 
from Voldemort’s wand

“Avada Kedavra!” A jet of green light issued …
… move and a flash of green light and .

… as a jet of red light blasted from Harry’s
… is operated or driven by a jet of water.

A yellow signal light warns you that …

NPM

datastoredatastore

green
red

yellow
water

…

Harry felt … on the floor as a jet of [mask] light came flying toward him. Harry felt … on the floor as a jet of [mask] came flying toward him.

(context from the datastore)(a) (b)

Figure 1.3: (a) A retrieval-augmented LM [Karpukhin et al., 2020; Min et al., 2019b, 2021a; Shi et al.,
2024b,a] and (b) an LM with a nonparametric softmax [Min et al., 2023b].

While retrieval augmentation has made significant impact in both academia and industry, whether it is the

optimal approach for using the datastore remains an open question. Specifically, the design of the architecture

makes it difficult to scale the amount of text retrieved from the datastore each time. Also, as we showed [Min

et al., 2024], performance of these models do not scale as effectively with the datastore size as desired.

As an alternative, we introduce a new approach that incorporates the datastore differently—by training

an LM with a nonparametric softmax. Instead of outputting a categorical distribution over words, this

method assigns scores to every word or phrase in the datastore as a nonparametric distribution, e.g., assigning

a high score to ‘green light’ from a Harry Potter book (Figure 3.1 (b)). This approach both uses

the datastore more effectively by incorporating a larger portion of the data at each step and handles rare

concepts better, assigning high scores to unseen tokens or phrases if their surrounding context is relevant.

We introduce NPM [Min et al., 2023b], one of the first such models. Training NPM at scale posed several

technical challenges: for instance, scoring all phrases in large-scale data for every training iteration is very

expensive. To address this, we designed novel techniques such as scalable batching and a training objective

that effectively approximates a distribution over the full corpus. Our empirical results demonstrate that NPM

outperforms alternatives on a range of tasks, is especially effective in handling rare concepts (such as rare

entities and facts), and can grow and be updated by expanding and replacing the datastore. Notably, this

approach scales and generalizes better than retrieval-augmented LMs [Min et al., 2024].

Chapter 4: Responsible Language Models. Given new functionality in nonparametric LMs, we can

re-examine the existing boundaries of LMs and solve qualitatively different problems. This section describes

how nonparametric LMs open up a new avenue for responsible data use as one example.

Using all available data on the web is a common practice in training LMs. However, this approach raises

concerns related to crediting data creators and complying with legal constraints such as copyright, since most

web data is copyrighted, and the Right to be Forgotten, since removing the data after training is infeasible. We

introduced a new approach based on nonparametric LMs: training LMs exclusively on permissively licensed

data while placing copyrighted data in a datastore that is only used during inference [Min et al., 2024]. This

approach not only achieves performance on par with that of existing LMs trained on all web data, but also

20



improves legal compliance: it (1) allows data creators to receive appropriate credit for their contribution

by providing data attributions for every model prediction, and (2) enables support for data opt-out requests

through the removal of data from the datastore, as the datastore can be updated at any time without re-training.
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Chapter 2

Understanding Current Language Models

2.1 Overview

Large language models (LMs) have recently been shown to be able to do in-context learning [Brown et al.,

2020a], where they learn a new task simply by conditioning on a few training examples and predicting which

tokens best complete a test input. This type of learning is attractive because the model learns a new task

through inference alone, without any parameter updates. However, performance significantly lags behind

supervised fine-tuning, results are often high variance [Zhao et al., 2021; Perez et al., 2021], and it is difficult

to engineer the templates that convert existing tasks to this format. Moreover, there is relatively less work in

understanding how and why in-context learning works.

In the first half of the section, we improve in-context learning by introducing MetaICL: Meta-training

for In-Context Learning (Section 2.3). MetaICL tunes a pretrained LM on a large set of tasks to learn how

to in-context learn, and is evaluated on strictly new unseen tasks. Each meta-training example matches the

test setup—it includes k + 1 training examples from one task that will be presented together as a single

sequence to the LM and the output of the final example is used to calculate the cross-entropy training loss.

Simply fine-tuning the model in this data setup directly leads to better in-context learning—the model learns

to recover the semantics of the task from the given examples, as must be done for in-context learning of

a new task at test time. This approach is related to recent work that uses multi-task learning for better

zero-shot performance at test time [Khashabi et al., 2020; Zhong et al., 2021a; Mishra et al., 2022; Wei

et al., 2022a; Sanh et al., 2022]. However, MetaICL is distinct as it allows learning new tasks from k

examples alone, without relying on a task reformatting (e.g., reducing everything to question answering)

or task-specific templates (e.g., converting different tasks to an LM problem). Our experiments show that

MetaICL consistently outperforms baselines including (1) a variety of LM in-context learning baselines

without meta-training [Brown et al., 2020a; Zhao et al., 2021; Holtzman et al., 2021; Min et al., 2022a], and

23



(2) multi-task learning followed by zero-shot transfer [Zhong et al., 2021a; Wei et al., 2022a; Sanh et al.,

2022].

In the second half of the section, we show that ground truth demonstrations are in fact not required for

effective in-context learning (Section 2.4). Specifically, replacing the labels in demonstrations with random

labels barely hurts performance in a range of classification and multi-choice tasks (Figure 2.3). The result is

consistent over 12 different models including the GPT-3 family [Radford et al., 2019; Min et al., 2022b; Wang

and Komatsuzaki, 2021; Artetxe et al., 2021; Brown et al., 2020a]. This strongly suggests, counter-intuitively,

that the model does not rely on the input-label mapping in the demonstrations to perform the task. Further

analysis investigates which parts of demonstrations actually do contribute to the performance. We identify

possible aspects of demonstrations (e.g., the label space and the distribution of the input text) and evaluate a

series of variants of the demonstrations to quantify the impact of each (Section 2.3.4). We find that: (1) the

label space and the distribution of the input text specified by the demonstrations are both key to in-context

learning (regardless of whether the labels are correct for individual inputs); (2) specifying the overall format

is also crucial, e.g., when the label space is unknown, using random English words as labels is significantly

better than using no labels; and (3) meta-training with an in-context learning objective (Section 2.3) magnifies

these effects—the models almost exclusively exploit simpler aspects of the demonstrations like the format

rather than the input-label mapping.

Our observation strongly suggests that relying on patterns in the training data is critical in performing

a range of tasks. This motivated new models that explicitly locate the data without memorizing the data—

nonparametric LMs (Chapter 3).

2.2 Background

In-context learning. When pre-trained language models were first introduced, fine-tuning was the standard

approach for transferring these models to new tasks [Devlin et al., 2019]. However, as models have grown

increasingly larger, often exceeding 10 billion parameters, fine-tuning has become impractical. Brown et al.

[2020a] proposed in-context learning as an alternative. As shown in Figure 1.2, the LM learns new tasks

through inference alone by conditioning on a concatenation of the training data as demonstrations, without

any gradient updates.

In-context learning has been the focus of significant study since its introduction. Prior work proposes

better ways of formulating the problem [Zhao et al., 2021; Holtzman et al., 2021; Min et al., 2022a], better

ways of choosing labeled examples for the demonstrations [Liu et al., 2021; Lu et al., 2021; Rubin et al.,

2021], and learning to follow instructions as a variant of in-context learning [Efrat and Levy, 2020; Wei et al.,

2022a; Sanh et al., 2022].
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However, in-context learning is also reported to achieve poor performance when the target task is very

different from language modeling in nature or the LM is not large enough. Moreover, it can have high

variance and poor worst-case accuracy [Zhao et al., 2021; Perez et al., 2021; Lu et al., 2021].

Meta-training via multi-task learning. MetaICL (Section 2.3) is broadly inspired by a large body of

work in meta-learning [Vilalta and Drissi, 2002; Finn et al., 2017] and multi-task learning [Evgeniou and

Pontil, 2004; Ruder, 2017]. Prior work has shown that multi-task learning on a large collection of tasks

leads to better performance on a new task, either when tested zero-shot [Khashabi et al., 2020; Zhong et al.,

2021a; Mishra et al., 2022; Wei et al., 2022a] or when further finetuned [Aghajanyan et al., 2021; Ye et al.,

2021]. In particular, the former is closely related to our work, as it eliminates the need for parameter updates

on a target task. However, these zero-shot models are either limited to tasks sharing the same format as

training tasks (e.g., a question answering format) [Khashabi et al., 2020; Zhong et al., 2021a], or rely heavily

on task-specific templates [Mishra et al., 2022; Wei et al., 2022a; Sanh et al., 2022] which are difficult to

engineer due to high variance in performance from very small changes [Mishra et al., 2021].

In Section 2.3, we propose a meta-training method for better in-context learning that improves few-shot

performance. We show that it effectively learns semantics of a new task with no manual effort, significantly

outperforming zero-shot transfer methods, and being complementary to natural language instructions [Sanh

et al., 2022; Wei et al., 2022a]. While Wei et al. [2022a] sees benefits of meta-training only with 68B or more

parameters, our experiments demonstrate improvements with a much smaller model (770M).

Chen et al. [2022b], concurrently to our work, propose meta-training for in-context learning. Our

approach differs in a number of ways: we remove requirements of human-written templates or instructions,

and include more diverse tasks, stronger baselines, and extensive experiments in much larger scale with many

meta-training/target splits.

Understanding in-context learning. Relatively less work has been done to understand why in-context

learning works. Xie et al. [2022] provide theoretical analysis that in-context learning can be formalized as

Bayesian inference that uses the demonstrations to recover latent concepts. Razeghi et al. [2022] show that

in-context learning performance is highly correlated with term frequencies in the pre-training data. To the

best of our knowledge, our work (Section 2.4) is the first that provides an empirical analysis that investigates

why in-context learning achieves performance gains over zero-shot inference. We find that the ground truth

input-label mapping in the demonstrations has only a marginal effect, and measure the impact of finer-grained

aspects of the demonstrations.

2.3 MetaICL: Meta-training for In-Context Learning

We introduce MetaICL (Meta-training for In-Context Learning), a new meta-training framework for few-shot

learning where a pretrained language model is tuned to do in-context learning on a large set of training tasks.
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Meta-training Inference

Task C meta-training tasks An unseen target task

Data given Training examples Ti = {(xi
j , y

i
j)}Ni

j=1, ∀i ∈ [1, C] (Ni ≫ k)
Training examples (x1, y1), · · · , (xk, yk),
Test input x

Objective

For each iteration,

argmaxc∈CP (c|x1, y1, · · · , xk, yk, x)
1. Sample task i ∈ [1, C]
2. Sample k + 1 examples from Ti: (x1, y1), · · · , (xk+1, yk+1)
3. Maximize P (yk+1|x1, y1, · · · , xk, yk, xk+1)

Table 2.1: Overview of MetaICL (Section 2.3.1). MetaICL uses the same in-context learning setup at both
meta-training and inference. At meta-training time, k + 1 examples for a task is sampled, where the last
example acts as the test example and the rest k examples act as the training examples. Inference is the same
as typical in-context learning where k labeled examples are used to make a prediction for a test input.

2.3.1 Method

The key idea of MetaICL is to use a multi-task learning scheme over a large collection of meta-training tasks,

in order for the model to learn how to condition on a small set of training examples, recover the semantics of

a task, and predict the output based on it (Table 2.1). Following previous literature [Brown et al., 2020a],

the training examples are concatenated and provided as an single input to the model, which is feasible for

k-shot learning (e.g., k = 16). At test time, the model is evaluated on an unseen target task that comes with k

training examples, and inference directly follows the same data format as in meta-training.

Meta-training. The model is trained on a collection of tasks which we call meta-training tasks. For

every iteration, one meta-training task is sampled, and k + 1 training examples (x1, y1), · · · , (xk+1, yk+1)

are sampled from the training examples of the chosen task. We then supervise the model by feeding the

concatenation of x1, y1, · · · , xk, yk, xk+1 to the model as an input and train the model to generate yk+1 using

a negative log likelihood objective. This simulates in-context learning where the first k examples serve as

training examples and the last (k + 1)-th example is regarded as the test example.

Inference. For a new target task, the model is given k training examples (x1, y1), · · · , (xk, yk) as well as a

test input x. It is also given a set of candidates C which is either a set of labels (in classification) or answer

options (in question answering). As in meta-training, the model takes a concatenation of x1, y1, · · · , xk, yk, x
as the input, and compute the conditional probability of each label ci ∈ C. The label with the maximum

conditional probability is returned as a prediction.

Channel MetaICL. We introduce a noisy channel variant of MetaICL called Channel MetaICL, following

Min et al. [2022a]. At meta-training time, the model is given a concatenation of y1, x1, · · · , yk, xk, yk+1 and

is trained to generate xk+1. At inference, the model computes argmaxc∈CP (x|y1, x1, · · · , yk, xk, c).
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2.3.2 Experimental Setup

Datasets

We have 142 unique tasks in total, covering a variety of problems including text classification, question

answering (QA), natural language inference (NLI) and paraphrase detection. All tasks are in English.

We experiment with seven distinct settings as shown in Table 2.2 (left), where there is no overlap between

the meta-training and target tasks. The number of unique target tasks in total is 52, which is significantly

larger than other relevant work [Khashabi et al., 2020; Zhong et al., 2021a; Mishra et al., 2022; Wei et al.,

2022a; Sanh et al., 2022]. Each target task is either classification or multi-choice, where a set of candidate

options (C in Table 2.1) is given.

HR→LR (High resource to low resource): We experiment with a setting where datasets with 10,000 or more

training examples are used as meta-training tasks and the rest are used as target tasks. We think using high

resource datasets for meta-training and low resource datasets as targets is a realistic and practical setting for

few-shot learning.

X→X (X={CLS, QA}): We experiment with two settings with meta-training and target tasks sharing the task

format, although with no overlap in tasks.

Non-X→X (X={CLS, QA, NLI, Paraphase}): Lastly, we experiment with four settings where meta-training

tasks do not overlap with target tasks in task format and required capabilities. These settings require the most

challenging generalization capacities.

Each setting has a subset of target tasks with no domain overlap with any meta-training tasks (e.g., finance,

poem, climate or medical). We report both on all target tasks or on target tasks with no domain overlap only.

Full details of the settings and datasets with citations are provided in Appendix A.1.

Baselines

We compare MetaICL and Channel MetaICL with a range of baselines, as summarized in Table 2.2 (right).

0-shot refers to zero-shot inference. In-context refers to in-context learning: conditioning on a concatenation

of k training examples, following Brown et al. [2020a]. PMI 0-shot, PMI In-context refer to the PMI

method from Holtzman et al. [2021]; Zhao et al. [2021] with either 0-shot or In-context learning. Channel
0-shot, Channel In-context refer to the noisy channel method from Min et al. [2022a] with either 0-shot or

In-context learning. Multi-task 0-shot is the LM trained on the same meta-training tasks without in-context

learning objective, i.e., maximize P (y|x) without k other training examples, and then use zero-shot transfer

on a target task. This is equivalent to MetaICL with k = 0. This is a typical multi-task learning approach

from previous work [Khashabi et al., 2020; Zhong et al., 2021a; Wei et al., 2022a]. Channel Multi-task
0-shot is a channel variant of Multi-task 0-shot. Fine-tune is an LM finetuned on an individual target task.
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Meta-train Target

Setting # tasks # examples Setting # tasks

HR 61 819,200 LR 26

CLS 43 384,022
CLS 20

Non-CLS 37 368,768

QA 37 486,143
QA 22

Non-QA 33 521,342

Non-NLI 55 463,579 NLI 8

Non-Paraphrase 59 496,106 Paraphrase 4

Method
Meta Target

train train # samples

0-shot ✗ ✗ 0
PMI 0-shot ✗ ✗ 0
Channel 0-shot ✗ ✗ 0
In-context ✗ ✗ k
PMI In-context ✗ ✗ k
Channel In-context ✗ ✗ k

Multi-task 0-shot ✓ ✗ 0
Channel Multi-task 0-shot ✓ ✗ 0
MetaICL (Ours) ✓ ✗ k
Channel MetaICL (Ours) ✓ ✗ k

Fine-tune ✗ ✓ k
Fine-tune w/ meta-train ✓ ✓ k

Table 2.2: Left. Statistics of seven different settings. ‘# tasks’ in meta-training is equivalent to C in Table 2.1.
For all settings, there is no overlap in tasks between meta-training and target. ‘HR’ and ‘LR’ indicate high
resource and low resource, respectively. Datasets and the task ontology are taken from CROSSFIT [Ye et al.,
2021] and UNIFIEDQA [Khashabi et al., 2020]. See Appendix A.1 for the full dataset list. Right. Baselines
and MetaICL. ‘train’ indicates whether the model is trained with parameter updates, and ‘# samples’ indicates
the number of training examples used on a target task.

This is not directly comparable to other methods as parameter updates are required for every target task.

Fine-tune w/ meta-train is an LM trained on meta-training tasks first and then further fine-tuned it on a

target task. This is not directly comparable to other methods either.

Evaluation

We use Macro-F11 and Accuracy as evaluation metrics for classification tasks and non-classification tasks,

respectively. For a target task, we use k = 16 training examples, sampled uniformly at random. We relax the

assumption of perfect balance between labels on k training examples, following Min et al. [2022a]. Because

in-context learning is known to have high variance [Zhao et al., 2021; Perez et al., 2021; Lu et al., 2021], we

use 5 different sets of k training examples. We first compute the average and the worst-case performance

over seeds for every target task, and then report the macro-average of them over all target tasks.

Model Details

As a base LM, we use GPT-2 Large [Radford et al., 2019] which consists of 770M parameters. For baselines

without meta-training (raw LMs), we also compare with GPT-J [Wang and Komatsuzaki, 2021], which is the

largest public causal LM at the time of writing, consisting of 6B parameters.

1More suitable than accuracy for imbalanced classification.
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Prior work uses human-authored templates to transform the input-output pair to a natural language

sentence [Zhong et al., 2021a; Mishra et al., 2022; Wei et al., 2022a; Chen et al., 2022b]. They require

expensive manual effort (as 136 different templates are required for 136 tasks in this paper) and cause unstable

model performance due to many different ways of writing [Mishra et al., 2021]. We eliminate templates,

using the given input (or a concatenation of inputs if there are multiple) and label words provided in the

original datasets.2

All implementation is done in PyTorch [Paszke et al., 2019] and Transformers [Wolf et al., 2020]. For

meta-training, we use up to 16,384 training examples per task, a batch size of 8, learning rate of 1× 10−5

and a sequence length of 1024. For multi-task 0-shot baselines (the baselines with no in-context learning), we

use a sequence length of 256. We train the model for 30, 000 steps.3 To save memory during meta-training,

we use an 8-bit approximation [Dettmers et al., 2022] of an Adam optimizer [Kingma and Ba, 2015] and

mixed precision [Micikevicius et al., 2017]. Training was done for 4.5 hours with eight 32GB GPUs. This is

drastically more efficient than recent prior work, e.g., 270 hours of a 512GB TPU in Sanh et al. [2022].

2.3.3 Main Results

Table 2.3 reports results using GPT-2 Large [Radford et al., 2019] which consists of 770M parameters. The

top and the bottom respectively report on all target tasks and target tasks in unseen domains only.

Our baselines are strong. Among raw LMs without meta-training (the first six rows of Table 2.3), we

observe that channel in-context baselines are the most competitive, consistent with findings from Min et al.

[2022a]. We then find that Multi-task 0-shot baselines do not outperform the best raw LM baseline in most

settings, despite being supervised on a large set of meta-training tasks. This somewhat contradicts findings

from Wei et al. [2022a]; Sanh et al. [2022]. This is likely because (1) our models are much smaller than theirs

(770M vs. 11B–137B)4, and (2) we include much stronger baselines including PMI and channel.

MetaICL outperforms baselines. MetaICL and Channel MetaICL consistently outperform a range of

strong baselines. In particular, Channel MetaICL achieves the best performance in 6 out of 7 settings. Gains

are particularly significant in the HR→LR, non-NLI→NLI and non-Para→Para settings (6–15% absolute).

This is noteworthy because HR→LR targets the common low-resource case where new tasks have very few

labeled examples, and the other two represent large data distribution shifts where the test tasks are relatively

different from the meta-training tasks. This demonstrates that MetaICL can infer the semantics of new tasks

in context even when there are no closely related training tasks.

2In our preliminary experiments, we explored templates taken from prior work, but found that they do not consistently improve
few-shot performance, even when they do improve zero-shot performance.

3We also explored training longer, but it did not improve performance.
4Wei et al. [2022a] reports Multi-task 0-shot starts to be better than raw LMs only when the model size is 68B or larger.
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Method HR→LR
Class

→Class
non-Class
→Class

QA
→QA

non-QA
→QA

non-NLI
→NLI

non-Para
→Para

All target tasks
0-shot 34.8 34.2 34.2 40.2 40.2 25.5 34.2
PMI 0-shot 35.1 33.8 33.8 40.2 40.2 27.9 39.2
Channel 0-shot 36.5 37.3 37.3 38.7 38.7 33.9 39.5
In-context 38.2/35.3 37.4/33.9 37.4/33.9 40.1/38.7 40.1/38.7 34.0/28.3 33.7/33.1
PMI In-context 39.2/33.7 38.8/30.0 38.8/30.0 40.3/38.8 40.3/38.8 33.0/28.0 38.6/33.4
Channel In-context 43.1/38.5 46.3/40.3 46.3/40.3 40.8/38.1 40.8/38.1 39.9/34.8 45.4/40.9

Multi-task 0-shot 35.6 37.3 36.8 45.7 36.0 40.7 30.6
Channel Multi-task 0-shot 38.8 40.9 42.2 42.1 36.4 36.8 35.1
MetaICL 43.3/41.7 43.4/39.9 38.1/31.8 46.0/44.8 38.5/36.8 49.0/44.8 33.1/33.1
Channel MetaICL 49.1/46.8 50.7/48.0 50.6/48.1 44.9/43.5 41.9/40.5 54.6/51.9 52.2/50.3

Fine-tune 46.4/40.0 50.7/44.0 50.7/44.0 41.8/39.1 41.8/39.1 44.3/32.8 54.7/48.9
Fine-tune w/ meta-train 52.0/47.9 53.5/48.5 51.2/44.9 46.7/44.5 41.8/39.5 57.0/44.6 53.7/46.9

Target tasks in unseen domains
0-shot 32.6 32.6 32.6 45.9 45.9 33.4 38.3
PMI 0-shot 28.9 28.9 28.9 44.4 44.4 33.4 32.9
Channel 0-shot 29.1 29.1 29.1 41.6 41.6 33.1 32.6
In-context 30.6/27.5 30.6/27.5 30.6/27.5 45.6/44.7 45.6/44.7 52.0/41.3 35.8/34.1
PMI In-context 34.9/27.7 34.9/27.7 34.9/27.7 45.4/44.7 45.4/44.7 47.8/35.2 38.5/33.3
Channel In-context 39.6/33.6 39.6/33.6 39.6/33.6 44.7/40.6 44.7/40.6 40.4/35.7 44.1/36.8

Multi-task 0-shot 35.4 28.0 28.6 71.2 40.3 33.5 35.0
Channel Multi-task 0-shot 36.3 31.1 34.3 54.4 39.4 50.8 34.1
MetaICL 35.3/32.7 32.3/29.3 28.1/25.1 69.9/68.1 48.3/47.2 80.1/77.2 34.0/34.0
Channel MetaICL 47.7/44.7 41.9/37.8 48.0/45.2 57.9/56.6 47.2/45.0 62.0/57.3 51.0/49.9

Fine-tune 44.9/37.6 44.9/37.6 44.9/37.6 43.6/39.1 43.6/39.1 56.3/33.4 56.6/51.6
Fine-tune w/ meta-train 53.3/43.2 53.2/43.7 46.1/36.9 67.9/66.2 44.5/42.8 71.8/58.2 65.6/61.4

Table 2.3: Main results, using GPT-2 Large. Two numbers indicate the average and the worst-case perfor-
mance over different seeds used for k target training examples. Bold indicates the best average result except
results from fine-tuned models that are not comparable.

While MetaICL significantly outperforms baselines in most settings, it only marginally outperforms

Multi-task 0-shot in the QA→QA setting, as an exception. This is likely because the meta-training and

target tasks are relatively similar, allowing the Multi-task 0-shot baseline to achieve very strong performance.

Nonetheless, performance of Multi-task 0-shot in QA significantly drops when the model is trained on

non-QA tasks, while performance of MetaICL drops substantially less.

Gains are larger on unseen domains. Gains over Multi-task 0-shot are more significant on target tasks in

unseen domains. In particular, Multi-task 0-shot is generally less competitive compared to raw LM baselines,

likely because they require more challenging generalization. MetaICL suffers less from this problem and is

consistently better or comparable to raw LM baselines across all settings.

Comparison to fine-tuning. MetaICL matches or sometimes even outperforms fine-tuned models without

meta-training. Nonetheless, fine-tuning with meta-training exceeds both MetaICL and fine-tuning without
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Method HR→LR
Class

→Class
non-Class
→Class

QA
→QA

non-QA
→QA

non-NLI
→NLI

non-Para
→Para

All target tasks
Channel In-context 43.1/38.5 46.3/40.3 46.3/40.3 40.8/38.1 40.8/38.1 39.9/34.8 45.4/40.9
MetaICL 43.3/41.7 43.4/39.9 38.1/31.8 46.0/44.8 38.5/36.8 49.0/44.8 33.1/33.1
Channel MetaICL 49.1/46.8 50.7/48.0 50.6/48.1 44.9/43.5 42.1/40.8 54.6/51.9 52.2/50.3

GPT-J Channel In-context 48.6/44.4 51.5/47.0 51.5/47.0 47.0/45.2 47.0/45.2 47.2/41.7 51.0/47.5

Target tasks in unseen domains
Channel In-context 39.6/33.6 39.6/33.6 39.6/33.6 44.7/40.6 44.7/40.6 40.4/35.7 44.1/36.8
MetaICL 35.3/32.7 32.3/29.3 28.1/25.1 69.9/68.1 48.3/47.2 80.1/77.2 34.0/34.0
Channel MetaICL 47.7/44.7 41.9/37.8 48.0/45.2 57.9/56.6 47.2/45.0 62.0/57.3 51.0/49.9

GPT-J Channel In-context 42.8/38.4 42.8/38.4 42.8/38.4 55.7/54.4 55.7/54.4 51.1/40.4 52.0/46.5

Table 2.4: Comparison between raw LM in-context learning (based on GPT-2 Large and GPT-J) and MetaICL
(based on GPT-2 Large). GPT-2 Large used unless otherwise specified. Two numbers indicate the average and
the worst-case performance over different seeds used for k target training examples. For raw LM baselines,
Channel In-context is reported because it is the best raw LM baseline overall across the settings.

meta-training, because meta-training helps in supervised learning as it does in in-context learning. This

indicates that there is still room for improvement in methods that allow learning without parameter updates.

Comparison to GPT-J. In Table 2.4, we compare GPT-2 Large based models with raw LM baselines based

on GPT-J which consists of 6B parameters. MetaICL, despite being 8x smaller, outperforms or matches

GPT-J baselines.

2.3.4 Ablations

Varying number of training examples. We vary the number of training examples (k) from 0, 4, 8, 16 to

32. In-context learning with k = 0 is equivalent to the zero-shot method. Results are shown in Figure 2.1.

Increasing k generally helps across all models, and Channel MetaICL outperforms the raw in-context learning

over all values of k. We additionally find that the performance tends to saturate when k is closer to 16, which

we discuss in more detail in Section 2.4.2.

Number of meta-training tasks. To see the impact of the number of meta-training tasks, we subsample

{7, 15, 30} meta-training tasks out of 61 in the HR→LR setting. For each, we use ten different random seeds

to additionally see the impact of the choice of meta-training tasks.

Figure 2.2 reports the results. On average, performance generally increases as the number of tasks

increase, which is consistent with results in Mishra et al. [2022]; Wei et al. [2022a]. Across different numbers

of meta-training tasks, Channel MetaICL consistently outperforms other models. Nonetheless, there is

nonnegligible variance across different choices of meta-training (the bottom of Figure 2.2), indicating that a

choice of meta-training gives substantial impact in performance.
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Figure 2.1: Ablation on the number of training examples (k) in the HR→LR setting. k = 0 is equivalent to
the zero-shot methods.
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Figure 2.2: Ablation on the number of meta-training tasks ({7, 15, 30, 61}). The graph of the average (left)
and the box chart (right) over different meta-training sets using 10 different random seeds (except for 61).

Diversity in meta-training tasks. We hypothesize that the diversity in meta-training tasks may impact

performance of MetaICL. To verify this hypothesis, we create two settings by subsampling 13 out of 61

meta-training datasets in the HR→LR setting. One setting is diverse in their task formats and required

capacities: QA, NLI, relation extraction, sentiment analysis, topic classification, hate speech detection and

more. The other setting is less diverse, including tasks related to sentiment analysis, topic classification and

hate speech detection only. A full list of datasets is reported in Appendix A.1. Using these two settings, we

compare multi-task zero-shot transfer baselines and MetaICL.

Results are reported in Table 2.5. We find that MetaICL with a diverse set outperforms MetaICL with

a non-diverse set by a substantial margin. This shows that diversity among meta-training tasks is one of

substantial factors for the success of MetaICL.

We also conducted ablations that provide more insights on the choice of meta-training tasks, such as

(1) high quality data with diverse domains tend to help (e.g., GLUE family [Wang et al., 2018a]) and (2)
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Method Diverse No Diverse

0-shot 34.9
PMI 0-shot 34.8
Channel 0-shot 36.8
In-context 38.2/35.4
PMI In-context 38.9/33.3
Channel In-context 42.9/38.5

Multi-task 0-shot 35.2 29.9
Channel Multi-task 0-shot 41.6 38.3
MetaICL 45.6/43.4 38.8/35.4
Channel MetaICL 47.2/44.7 45.3/42.6

Table 2.5: Ablation on the diversity of meta-training
tasks in the HR→LR setting. For both settings, the
number of meta-training tasks is 13, and the number
of target tasks is 26 as in the original HR→LR set-
ting. A full list of meta-training tasks is shown in
Appendix A.1.

Method w/o Instruct w/ Instruct

# instruct/task 0 1 8.3

0-shot 33.3 34.2
PMI 0-shot 34.6 27.8
Channel 0-shot 32.5 30.6
In-context 34.5/31.5 45.2/42.3
PMI In-context 37.7/32.7 41.9/37.6
Channel In-context 39.0/35.4 39.6/35.3

MT 0-shot 35.7 32.6 37.1
Channel MT 0-shot 36.7 30.6 36.0
MetaICL 40.4/37.7 42.6/41.0 43.2/41.0
Channel MetaICL 42.2/40.0 45.3/43.9 46.9/44.2

Table 2.6: Ablation on the impact of natural in-
structions. ‘w/ Instruct’ uses instructions from Sanh
et al. [2022], either one per meta-training task or
all available ones; ‘w/o Instruct’ does not. ‘# in-
struct/task’ indicates the number of instructions per
meta-training task on average. ‘MT 0-shot’ indicates
‘Multi-task 0-shot’. Both settings have the same
meta-training and target tasks. A full list of tasks is
shown in Appendix A.1.

adversarially collected data tends to be unhelpful. However, more systematic studies on how to choose the

best meta-training tasks and how they relate to particular target tasks should be done, which we leave for

future work. We refer readers to Appendix C.3 of the original publication [Min et al., 2022b] for more details.

Are instructions necessary? Most recent work has used human-written natural instructions for zero- or

few-shot learning [Mishra et al., 2022; Wei et al., 2022a; Sanh et al., 2022]. While we argue for not using

instructions to avoid manual engineering and high variance, we also ask: are instructions still useful with

MetaICL? On one hand, learning to condition on k examples may remove the necessity of instructions. On

the other hand, instructions may still be complementary and provide the model with extra useful infomration.

We aim to answer this question by using 32 meta-training tasks and 12 target tasks from the HR→LR

setting for which human-written instructions are available in Sanh et al. [2022].5 We have two variants: (a)

using one instruction per meta-training task, and (b) using all available instructions including 267 instructions

in total (8.3 per meta-training task) which Sanh et al. [2022] found to be better than (a). We then compare

MetaICL and a range of baselines with and without instructions.

Results are reported Table 2.6. As in Wei et al. [2022a] and Sanh et al. [2022], Multi-task 0-shot

outperforms the raw-LM 0-shot baseline. However, MetaICL with no instructions is better than Multi-task

0-shot with instructions. Furthermore, MetaICL achieves further improvements when instructions are jointly

5github.com/bigscience-workshop/promptsource
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used, significantly outperforming all baselines. In fact, when increasing the number of instructions per task

from 0, 1 to 8.3, performance of MetaICL improves much more than performance of Multi-task 0-shot does.

To summarize, (1) learning to in-context learn (MetaICL) outperforms learning to learn from instructions; (2)

MetaICL and using instructions are largely complementary, and (3) MetaICL actually benefits more from

using instructions than Multi-task 0-shot does.

Importantly, Channel MetaICL trained on available tasks and instructions still achieves lower performance

than Channel MetaICL without templates/instructions (46.9 from Table 2.6 vs. 49.1 from Table 2.3). This is

likely because the model with instructions was trained with less meta-training tasks, which was unavoidable

since instructions are only available on 32 out of 61 meta-training tasks. This supports our earlier choice

of not using human-written templates/instructions, since writing templates and instructions for every task

requires extensive effort.

It is worth noting that, it is nonetheless difficult to make direct comparisons with Wei et al. [2022a] and

Sanh et al. [2022] because there are many moving components: size of LMs, types of LMs (e.g., causal LM

vs. masked LM), splits between meta-training and target tasks, and more.

2.3.5 Summary & Limitations

We introduced MetaICL, a new few-shot learning method where an LM is meta-trained to learn to in-context

learn, i.e. condition on training examples to recover the task and make predictions. We experiment with a

large, diverse collection of tasks, consisting of 142 unique tasks in total and 52 unique target tasks, using seven

different settings. MetaICL outperforms a range of strong baselines including in-context learning without

meta-training and multi-task learning followed by zero-shot transfer, and outperforms or matches 8x bigger

models. We identify ingredients for success of MetaICL such as the number and diversity of meta-training

tasks. We also demonstrate that, while MetaICL is better than recent work using natural instructions, they are

complementary and the best performance is achieved by integrating MetaICL with instructions.

Our work is limited in multiple dimensions. First, in-context learning approaches in general requires

much longer context at both meta-training and inference due to feeding the concatenation of the training

data, thus being less efficient compared to baselines that do not use in-context learning. Second, our work

experiment with a casual language model with modest size (770M parameters). Future work may investigate

extending our approach to a masked language model and a larger model. Third, our experiments focus

on classification and multi-choice tasks where a set of candidate options is given. Future work may study

applying our approach for a wider range of tasks including free-form generation. Other avenues for future

work include further improving MetaICL to outperform supervised models with meta-training, identification

of which meta-training tasks are helpful on target tasks, and how to better combine human-written instructions

and MetaICL.
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Model # Params Public Meta-trained

GPT-2 Large 774M ✓ ✗

MetaICL 774M ✓ ✓

GPT-J 6B ✓ ✗

fairseq 6.7B† 6.7B ✓ ✗

fairseq 13B† 13B ✓ ✗

GPT-3 175B‡ ✗ ✗

Table 2.7: A list of LMs used in the experiments: GPT-2 [Radford et al., 2019], MetaICL [Min et al.,
2022b], GPT-J [Wang and Komatsuzaki, 2021], fairseq LMs [Artetxe et al., 2021] and GPT-3 [Brown et al.,
2020a]. ‘Public’ indicates whether the model weights are public; ‘Meta-trained’ indicates whether the model
is meta-trained with an in-context learning objective. †We use dense models in Artetxe et al. [2021] and refer
them as fairseq LMs for convenience. ‡We use the Davinci API (the base version, not the instruct version)
and assume it to be 175B, following Gao et al. [2020] and Artetxe et al. [2021].

2.4 Understanding In-Context Learning.

Despite in-context learning consistently outperforming zero-shot inference on a wide range of tasks, there

is little understanding of how it works and which aspects of the demonstrations contribute to end task

performance. In this section, we show that ground truth demonstrations are in fact not required—randomly

replacing labels in the demonstrations barely hurts performance on a range of classification and multi-choce

tasks, consistently over 12 different models including GPT-3. Instead, we find that other aspects of the

demonstrations are the key drivers of end task performance, including the fact that they provide a few

examples of (1) the label space, (2) the distribution of the input text, and (3) the overall format of the sequence.

Our analysis provides a new way of understanding how and why in-context learning works, while opening up

new questions about how much can be learned from large language models through inference alone.

2.4.1 Method

To see the impact of correctly-paired inputs and labels in the demonstrations—which we call the ground truth

input-label mapping—we compare the following three methods.6

No demonstrations is a typical zero-shot method that does not use any labeled data. A prediction is made

via argmaxy∈CP (y|x), where x is the test input and C is a small discrete set of possible labels.

Demonstrations w/ gold labels are used in a typical in-context learning method with k labeled examples

(x1, y1)...(xk, yk). A concatenation of k input-label pairs is used to make a prediction via argmaxy∈CP (y|x1, y1...xk, yk, x).
Demonstrations w/ random labels are formed with random labels, instead of gold labels from the labeled

data. Each xi (1 ≤ i ≤ k) is paired with ỹi that is randomly sampled at uniform from C. A concatenation of

(x1, ỹ1)...(xk, ỹk) is then used to make a prediction via argmaxy∈CP (y|x1, ỹ1...xk, ỹk, x).

6Without loss of generality, all methods are described based on the direct method, but can be trivially converted to the channel
method by flipping x and y.
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We used the following experimental setup.

Models. We experiment with 12 models in total. We include 6 language models (Table 2.7), all of which

are decoder-only, dense LMs. We use each LM with two inference methods, direct and channel, following

Min et al. [2022a]. The sizes of LMs vary from 774M to 175B. We also include MetaICL, our model in

Section 2.3 that is initialized from GPT-2 Large and then meta-trained on a collection of supervised datasets

with an in-context learning objective. We ensure that our evaluation datasets do not overlap with those used

at meta-training time.

Evaluation Data. We evaluate on 26 datasets, including sentiment analysis, paraphrase detection, natural

language inference, hate speech detection, question answering, and sentence completion. They are exactly the

same as the evaluation datasets used in the HR→LR setting in Section 2.3 (full list and references provided

in Appendix A.1).7 All datasets are classification and multi-choice tasks.

We use these datasets because they (1) are true low-resource datasets with less than 10K training examples,

(2) include well-studied benchmarks from GLUE [Wang et al., 2018a] and SuperGLUE [Wang et al., 2019a],

and (3) cover diverse domains including science, social media, finance, and more.

Other Details. We use k = 16 examples as demonstrations by default for all experiments in the paper,

unless otherwise specified. Examples are sampled at uniform from the training data. We choose a set of k

training examples using 5 different random seeds and run experiments 5 times. For fairseq 13B and GPT-3,

due to limited resources, we experiment with a subset of 6 datasets8 and 3 random seeds. We report Macro-

F19 for classification tasks and Accuracy for multi-choice tasks. We compute per-dataset average over seeds,

and then report macro-average over datasets. We use the minimal templates in forming an input sequence

from an example. All experiments are reproducible from github.com/Alrope123/rethinking-

demonstrations.

2.4.2 Ground Truth Matters Little

Results are reported in Figure 2.3. First, using the demonstrations with gold labels significantly improves the

performance over no demonstrations,10 as it has been consistently found in much of prior work [Brown et al.,

2020a; Zhao et al., 2021; Liu et al., 2021]. We then find that replacing gold labels with random labels only
marginally hurts performance. The trend is consistent over nearly all models: models see performance

7For convenience, we use ‘labels’ to refer to the output for the task, though our datasets include non-classification tasks.
8Three classification and three multi-choice: MRPC, RTE, Tweet_eval-hate, OpenbookQA, CommonsenseQA, COPA.
9Known to be better for imbalanced classes.

10There are some exceptions, e.g., in the classification tasks, Direct GPT-2, Direct GPT-J and Direct fairseq 6.7B models are
not significantly better than random guessing on many datasets; Channel fairseq 13B has significantly better no-demonstrations
performance compared to demonstrations with gold labels. We thus discuss the results from these models less significantly for the
rest of analysis.
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Figure 2.3: Results when using no-demonstrations, demonstrations with gold labels, and demonstrations with
random labels in classification (top) and multi-choice tasks (bottom). The first eight models are evaluated on
16 classification and 10 multi-choice datasets, and the last four models are evaluated on 3 classification and 3
multi-choice datasets. Performance with random labels is very close to performance with gold labels.

drop in the range of 0–5% absolute. There is less impact in replacing labels in multi-choice tasks (1.7% on

average) than in classification tasks (2.6% absolute).

This result indicates that the ground truth input-label pairs are not necessary to achieve performance gains.

This is counter-intuitive, given that correctly paired training data is critical in typical supervised training—it

informs the model of the expected input-label correspondence required to perform the downstream task.

Nonetheless, the models do achieve non-trivial performance on the downstream tasks. This strongly suggests

that the models are capable of recovering the expected input-label correspondence for the task; however, it is

not directly from the pairings in the demonstrations.

It is also worth noting that there is particularly little performance drop in MetaICL: 0.1–0.9% absolute.

This suggests that meta-training with an explicit in-context learning objective actually encourages the model

to essentially ignore the input-label mapping and exploit other components of the demonstrations (more

discussion in Section 2.4.3).

In Appendix A.2, we provide additional results showing that (1) selecting random labels from a true

distribution of labels (instead of a uniform distribution) reduces the gap even further, and (2) the trends may

depend on the dataset, although the overall trend is consistent over most datasets.

Does the number of correct labels matter? To further examine the impact of correctness of labels in the

demonstrations, we conduct an ablation study11 by varying the number of correct labels in the demonstrations.

We evaluate “Demonstrations w/ a% correct labels” (0 ≤ a ≤ 100) which consist of k × a/100 correct

11For ablation studies, we experiment with 5 classification and 4 multi-choice datasets. Classification includes: MRPC, RTE,
Tweet_eval-hate, SICK, poem-sentiment; Multi-choice includes OpenbookQA, CommonsenseQA, COPA and ARC.
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Figure 2.4: Results with varying number of correct labels in the demonstrations. Channel and Direct used
for classification and multi-choice, respectively. Performance with no demonstrations (blue) is reported as a
reference.
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Figure 2.5: Ablations on varying numbers of examples in the demonstrations (k). Models that are the best
under 13B in each task category (Channel MetaICL and Direct GPT-J, respectively) are used.

pairs and k × (1 − a/100) incorrect pairs. Here, a = 100 is the same as typical in-context learning, i.e.,

demonstrations w/ gold labels.

Results are reported in Figure 2.4. Model performance is fairly insensitive to the number of correct labels

in the demonstrations. In fact, always using incorrect labels significantly outperforms no-demonstrations,

e.g., preserving 92%, 100% and 97% of improvements from using the demonstrations with MetaICL in

classification, MetaICL in multi-choice, and GPT-J in multi-choice, respectively. In contrast, GPT-J in

classification sees relatively significant performance drop with more incorrect labels, e.g., nearly 10% drop in

performance when always using incorrect labels. Still, always using incorrect labels is significantly better

than no demonstrations.

Is the result consistent with varying k? We study the impact of the number of input-label pairs (k) in the

demonstrations. Results are reported in Figure 2.5. First, using the demonstrations significantly outperforms

the no demonstrations method even with small k (k = 4), and performance drop from using gold labels to

using random labels is consistently small across varying k, in the range of 0.8–1.6%.12 Interestingly, model

performance does not increase much as k increases when k ≥ 8, both with gold labels and with random labels.

12With an exception of 4.4% in classification with k = 4, likely due to a high variance with a very small value of k.
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Figure 2.6: Results with minimal templates and manual templates. ‘+T’ indicates that manual templates are
used. Channel and Direct used for classification and multi-choice, respectively.

This is in contrast with typical supervised training where model performance rapidly increases as k increases,

especially when k is small. We hypothesize that larger labeled data is beneficial mainly for supervising the

input-label correspondence, and other components of the data like the example inputs, example labels and the

data format are easier to recover from the small data, which is potentially a reason for minimal performance

gains from larger k (more discussion in Section 2.4.3).

Is the result consistent with better templates? While we use minimal templates by default, we also

explore manual templates, i.e., templates that are manually written in a dataset-specific manner, taken from

prior work (details in Appendix A.2). Figure 2.6 shows that the trend—replacing gold labels with random

labels barely hurting performance—holds with manual templates. It is worth noting that using manual

templates does not always outperform using minimal templates.

2.4.3 Why does In-Context Learning work?

Section 2.4.2 shows that the ground truth input-label mapping in the demonstrations has little impact

to performance gains from in-context learning. This section further examines what other aspects of the

demonstrations lead to good performance of in-context learning.

We identify four aspects of the demonstrations (x1, y1)...(xk, yk) that potentially provide learning signal

Circulation revenue has increased by 5% in Finland.         \n         Positive
Format

(The use 
of pairs)

 =

Distribution of inputs Label spaceDemonstrations

Test example Input-label mapping

Panostaja did not disclose the purchase price.                  \n         Neutral

Paying off the national debt will be extremely painful.      \n         Negative

The acquisition will have an immediate positive impact.  \n         ?

Figure 2.7: Four different aspects in the demonstrations: the
input-label mapping, the distribution of the input text, the
label space, and the use of input-label pairing as the format
of the demonstrations.

(depicted in Figure 2.7).

• The input-label mapping, i.e., whether each

input xi is paired with a correct label yi.

• The distribution of the input text, i.e., the

underlying distribution that x1...xk are from.

• The label space, i.e., the space covered by

y1...yk.

• The format—specifically, the use of input-

label pairing as the format.
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Figure 2.8: Impact of the distribution of the inputs. Evaluated in classification (top) and multi-choice
(bottom). The impact of the distribution of the input text can be measured by comparing ■ and ■. The gap is
substantial, with an exception in Direct MetaICL (discussion in Section 2.4.3).

As Section 2.4.2 does for the input-label mapping, we design a series of variants of the demonstrations that

quantify the impact of each aspect in isolation (Section 2.4.3–2.4.3). We then additionally discuss the trend

of the models meta-trained with an in-context learning objective (Section 2.4.3). For all experiments, models

are evaluated on five classification and four multi-choice datasets as in Section 2.4.2. See Appendix A.2 and

Table A.4 for implementation details and example demonstrations, respectively.

Impact of the distribution of the input text

We experiment with OOD demonstrations which include out-of-distribution (OOD) text instead of the

inputs from unlabeled training data. Specifically, a set of k sentences {xi,rand}ki=1 are randomly sampled

from an external corpus, and replace x1...xk in the demonstrations. This variant assesses the impact of the

distribution of the input text, while keeping the label space and the format of the demonstrations.

Figure 2.8 shows that using out-of-distribution inputs instead of the inputs from the training data

significantly drops the performance when Channel MetaICL, Direct GPT-J or Channel GPT-J are used, both

in classification and multi-choice, by 3–16% in absolute. In the case of Direct GPT-J in multi-choice, it is

even significantly worse than no demonstrations. Direct MetaICL is an exception, which we think is the effect

of meta-training (discussion in Section 2.4.3). This suggests that in-distribution inputs in the demonstrations

substantially contribute to performance gains. This is likely because conditioning on the in-distribution text

makes the task closer to language modeling, since the LM always conditioned on the in-distribution text

during training.
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Figure 2.9: Impact of the label space. Evaluated in classification (top) and multi-choice (bottom). The impact
of the label space can be measured by comparing ■ and ■. The gap is significant in the direct models but not
in the channel models (discussion in Section 2.4.3).

Impact of the label space

We also experiment with demonstrations w/ random English words that use random English words as

labels for all k pairs. Specifically, we sample a random subset of English words Crand where |Crand| = |C|,
and randomly pair ỹi ∈ Crand with xi. This variant assesses the impact of the label space, while keeping the

distribution of the input text and the format of the demonstrations.

Based on Figure 2.9, direct models and channel models exhibit different patterns. With direct models, the

performance gap between using random labels within the label space and using random English words is

significant, ranging between 5–16% absolute. This indicates that conditioning on the label space significantly

contributes to performance gains. This is true even for multi-choice tasks where there is no fixed set of

labels—we hypothesize that multi-choice tasks still do have a particular distribution of the choices (e.g.,

objects like “Bolts” or “Screws” in the OpenBookQA dataset) that the model uses. On the other hand,

removing the output space does not lead to significant drop in the channel models: there is 0–2% drop

in absolute, or sometimes even an increase. We hypothesize that this is because the channel models only

condition on the labels, and thus are not benefiting from knowing the label space. This is in contrast to direct

models which must generate the correct labels.

Impact of input-label pairing

Section 2.4.3 and 2.4.3 focus on variants which keep the format of the demonstrations as much as possible.

This section explores variants that change the format. While there are many aspects of the format, we make

minimal modifications to remove the pairings of inputs to labels. Specifically, we evaluate demonstrations
with no labels where the LM is conditioned on the concatenation of x1...xk, and demonstrations with labels
only where the LM is conditioned on the concatenation of y1...yk. These ablations provide the no-format
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Figure 2.10: Impact of the format, i.e., the use of the input-label pairs. Evaluated in classification (top) and
multi-choice (bottom). Variants of demonstrations without keeping the format (■ and ■) are overall not
better than no demonstrations (■). Keeping the format is especially significant when it is possible to achieve
substantial gains with the label space but without the inputs (■ vs. ■ in Direct MetaICL), or with the input
distribution but without the labels (■ vs. ■ in Channel MetaICL and Channel GPT-J). More discussion in
Section 2.4.3.

counterparts of the ‘demonstrations with random English words’ and ‘demonstrations with OOD inputs’,

respectively.

Based on Figure 2.10, removing the format is close to or worse than no demonstrations, indicating the

importance of the format. This is likely because conditioning on a sequence of input-label pairs triggers the

model to mimic the overall format and complete the new example as expected when the test input is given.

More interestingly, keeping the format plays a significant role in retaining a large portion of performance

gains by only using the inputs or only using the labels. For instance, with Direct MetaICL, it is possible to

retain 95% and 82% of improvements from in-context learning (demonstrations with gold labels) by simply

sampling random sentences from a corpus and randomly pairing them with the label set (■ in Figure 2.10)

in classification and multi-choice, respectively. Similarly, with the channel models, it is possible to retain

82%, 87%, 86% and 75% of improvements from in-context learning by simply pairing each input from the

unlabeled training data with a random English word (■ in Figure 2.10) in MetaICL classification, GPT-J

classification, MetaICL multi-choice and GPT-J multi-choice, respectively. For all of these cases, removing

inputs instead of using OOD inputs, or removing labels instead of using random English words is significantly

worse, indicating that keeping the format of the input-label pairs is key.

Impact of meta-training

Different from other models, MetaICL is trained with an in-context learning objective (Section 2.3). We aim

to better understand the role of this meta-training in relation with our findings by closely examining the result

of MetaICL. In particular, the patterns we see so far are significantly more evident with MetaICL than with
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other models. For instance, the ground truth input-label mapping matters even less, and keeping the format

of the demonstrations matters even more. There is nearly zero influence of the input-label mapping and the

input distribution in Direct MetaICL, and the input-label mapping and the output space in Channel MetaICL.

Based on this observation, we hypothesize that meta-training encourages the model to exclusively
exploit simpler aspects of the demonstrations and to ignore others. This is based on our intuition that (1)

the input-label mapping is likely harder to exploit, (2) the format is likely easier to exploit, and (3) the space

of the text that the model is trained to generate is likely easier to exploit than the space of the text that the

model conditions on.13

2.4.4 Summary, Discussion, & Limitations

In summary, we study the role of the demonstrations with respect to the success of in-context learning.

We find that the ground truth input-label mapping in the demonstrations matters significantly less than

one might think—replacing gold labels with random labels in the demonstrations only marginally lowers

the performance. We then identify a series of aspects in the demonstrations and examine which aspect

actually contributes to performance gains. Results reveal that (1) gains are mainly coming from independent

specification of the input space and the label space, (2) the models can still retain up to 95% of performance

gains by using either the inputs only or the label set only if the right format is used, and (3) meta-training

with an in-context learning objective magnifies these trends. Together, our findings lead to a set of broader

indications about in-context learning, as well as avenues for future work.

Does the model learn at test time? If we take a strict definition of learning: capturing the input-label

correspondence given in the training data, then our findings suggest that LMs do not learn new tasks at test

time. Our analysis shows that the model may ignore the task defined by the demonstrations and instead use

prior from pre-training.

However, learning a new task can be interpreted more broadly: it may include adapting to specific

input and label distributions and the format suggested by the demonstrations, and ultimately getting to

make a prediction more accurately. With this definition of learning, the model does learn the task from the

demonstrations. Our experiments indicate that the model does make use of aspects of the demonstrations and

achieve performance gains.

Capacity of LMs. The model performs a downstream task without relying on the input-label correspondence

from the demonstrations. This suggests that the model has learned the (implicit notion of) input-label

correspondence from the language modeling objective alone, e.g., associating a positive review with the word

13That is, the direct model exploits the label space better than the input distribution, and the channel model exploits the input
distribution better than the label space.
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‘positive’. This is in line with Reynolds and McDonell [2021] who claim that the demonstrations are for task

location and the intrinsic ability to perform the task is obtained at pre-training time.14

On one hand, this suggests that the language modeling objective has led to great zero-shot capacity, even

if it is not always evident from the naive zero-shot accuracy. On the other hand, this suggests that in-context

learning may not work on a task whose input-label correspondence is not already captured in the LM. This

leads to the research question of how to make progress in NLP problems that in-context learning does not

solve: whether we need a better way of extracting the input-label mappings that are already stored in the

LM, a better variant of the LM objective that learns a wider range of task semantics, or explicit supervision

through fine-tuning on the labeled data.

Connection to instruction-following models. Prior work has found it promising to train the model

that reads the natural language description of the task (called instructions) and performs a new task at

inference [Mishra et al., 2022; Efrat and Levy, 2020; Wei et al., 2022a; Sanh et al., 2022]. We think the

demonstrations and instructions largely have the same role to LMs, and hypothesize that our findings hold for

instruction-following models: the instructions prompt the model to recover the capacity it already has, but

do not supervise the model to learn novel task semantics. This has been partially verified by Webson and

Pavlick [2022] who showed that the model performance does not degrade much with irrelevant or misleading

instructions. We leave more analysis on instruction-following models for future work.

Significantly improved zero-shot performance. One of our key findings is that it is possible to achieve

nearly k-shot performance without using any labeled data, by simply pairing each unlabeled input with a

random label and using it as the demonstrations. This means our zero-shot baseline level is significantly

higher than previously thought.15 Future work can further improve the zero-shot performance with relaxed

assumptions in access to the unlabeled training data.

Limitations. This paper focuses on the tasks from established NLP benchmarks that have real natural

language inputs. Synthetic tasks with more limited inputs may actually use the ground truth labels more, as

observed by Rong [2021].

We report macro-level analysis by examining the average performance over multiple NLP datasets, but

different datasets may behave differently. Appendix A.2 discusses this aspect, including findings that there

are larger gaps between using the ground truth labels and using the random labels in some dataset-model

pairs (e.g., in the most extreme case, nearly 14% absolute on the financial_phrasebank dataset with GPT-J).

Our experiments are limited to classification and multi-choice tasks. We hypothesize that ground truth

output may not be necessary for in-context learning in the open-set tasks such as generation, but leave this to

14However, while Reynolds and McDonell [2021] claims that the demonstrations are thus unnecessary, we think using the
demonstrations is actually the most unambiguous and the easiest way to prompt the model to perform a task.

15We take the perspective that using the unlabeled training data is permitted [Kodirov et al., 2015; Wang et al., 2019b; Schick and
Schütze, 2021].
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future work. Extending of our experiments to such tasks is not trivial, because it requires a variation of the

output which has incorrect input-output correspondence while keeping the correct output distribution (which

is important based on our analysis in Section 2.4.3).

2.5 Discussion of Subsequent Work

Our work presented in this section has led to a significant body of follow-up research, including LMs that

adopted meta-training [Chung et al., 2022; Wang et al., 2022; Ye et al., 2023b; Gu et al., 2023; Ye et al.,

2023a; Ivison et al., 2023], work discovering unexpected behaviors of LMs [Madaan and Yazdanbakhsh,

2022; Wei et al., 2023b; Burns et al., 2022; Halawi et al., 2023; Jang et al., 2022b; Wies et al., 2023; Lampinen

et al., 2022; Pan et al., 2023; Kim et al., 2022; Schaeffer et al., 2023; Zhang et al., 2023b; She et al., 2023;

Turpin et al., 2023], and work that used our analysis to inspire the development of better models [Lyu et al.,

2023; Wei et al., 2023a]. In this section, we discuss closely relevant work at the time of writing this thesis.

Work that adopted meta-training. Since the introduction of MetaICL and other concurrent work in

training the LM with in-context learning and natural instructions [Chen et al., 2021; Sanh et al., 2022;

Wei et al., 2022a], this recipe has become a standard practice in state-of-the-art LM alignment pipelines.

MetaICL is incorporated into FLAN-PaLM, one of Google’s leading models whose training recipe is

publicly available [Chung et al., 2022], and Tulu v2, one of the best, fully open sourced instruction-tuned

models [Ivison et al., 2023]. Arguably, the significance of the ability to perform in-context learning may have

diminished in recent models. This is partially because the use of natural instructions alone is often enough to

achieve good performance with a sufficiently large base model. Additionally, it is generally easier for users to

provide natural instructions than to write a handful of labeled examples. Nevertheless, for complex tasks

requiring a chain-of-thought prompting—a variant of in-context learning [Wei et al., 2022b]—further training

with in-context examples remains critical.

There have also been counterexamples: for instance, Iyer et al. [2022] found that incorporating MetaICL

can actually decrease performance in generation tasks, and its improvements are largely limited to classifica-

tion and multiple-choice tasks. They suggested that MetaICL may cause the model to become overfitted to

the format used in in-context examples. We consider this hypothesis likely to be true; in fact, it aligns with

our findings in Section 2.4.3. We also posit that differences in results are likely due to variations in settings,

such as the choice of base models, meta-training datasets, and evaluation datasets, and these need further

investigation.

How are findings in Section 2.4 applied to the current state-of-the-art LMs? Several subsequent work

studied the extent to which our findings generalize to larger, state-of-the-art LMs.
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Figure 2.11: Results with various configurations following Kim et al. [2022]: with and without a template,
and with and without calibration. Using random labels significantly degrades performance with no template
and naive prompting (top left) but not with other configurations.

Kim et al. [2022] studied the impact of using random or negated labels in in-context learning through

various conditions; they claimed that using random labels can perform poorly depending on the choice of

datasets, prompting methods (e.g., whether to apply calibration), and the template used for prompting. We

find that: (1) although certain combinations of settings (e.g., not using calibration and templates in prompting;

see Figure 2.11) lead to significant degradation in performance with random labels, in most settings, random

labels have minimal impact on performance; and (2) because the setting for the best in-context learning

performance sees minimal impact from using random labels, our key claim that correct labels are not essential

for in-context learning remains true. For further discussion, we refer readers to slides 44 to 51 from our

presentation at the EMNLP 2023 Workshop.

Wei et al. [2023b] argued that large LMs perform in-context learning in a qualitatively different manner,

claiming that the capability to in-context learn with negated labels16 emerges with scale. Although we

generally agree that current state-of-the-art LMs perform in-context learning much better, we think that care

must be taken in evaluating the impact of compounding factors. For instance, we posit that results in Wei

et al. [2023b] reveal that in-context learning with negated labels is near random guessing across all model

sizes for models without instruction tuning (see ‘GPT-3’ in Figure 2.12), indicating that the model size is not

a contributing factor. This holds true even with instruction tuning up to OpenAI’s text-davinci-001,

although text-davinci-001 performs well on in-context learning with negated labels. Therefore,

16For instance, assigning negative to a positive review and positive to a negative review.
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GPT3 Instruct GPT3 001 Instruct GPT3 002*

Figure 2.12: In-context learning with original labels and negated labels. Results are from Wei et al. [2023b];
we redrew the figures. *: text-davinci-002 was released after our paper was posted. All models except
for the 002 one achieve near random guessing performance (50%) with flipped labels, suggesting that even
large models cannot perform in-context learning when the task defined by in-context examples does not entail
with semantics from pre-training.

through some LLMs that are available to us can perform in-context learning with negated labels, we maintain

that it is difficult to attribute this solely to model size; it is more likely influenced by some unknown variant

of instruction tuning.17

Combining findings from Section 2.3 and 2.4. Wei et al. [2023a] proposed a new meta-training method that

uses k+1 labeled examples (x1, y1), · · · , (xk, yk), (xk+1, yk+1) and maximizes P (yk+1|x1, y1, · · · , xk, yk, xk+1),

as MetaICL does. However, instead of using standard NLP tasks for training, they used synthetic tasks

designed to isolate the impact of semantics from the training data, e.g., assigning negative to a positive

review and positive to a negative review, or assigning foo to a positive review and bar to a negative

review. Their experiments demonstrate that models trained on this objective show improved performance in

in-context learning with negated labels or semantically unrelated labels.

Extensions to generation tasks. Since the initial release of our paper, Madaan and Yazdanbakhsh [2022]

conducted a similar analysis with the chain of thought prompting [Wei et al., 2022b], which generates a

rationale for performing complex tasks such as arithmetic reasoning. They find that simply using random

17Wei et al. [2023b] also experimented with in-context learning with semantically unrelated labels, e.g., assigning foo to a
positive review and bar to a negative review. Our findings largely remain the same: plain language models achieve near random
guessing performance over all model sizes, although instruction-tuned models achieve better performance. For further discussion,
please refer to slides 55 to 63 from the presentation at the EMNLP 2023 Workshop.
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rationales (e.g., pairing a rationale from a different example) significantly degrades performance, but other

types of incorrect rationales (e.g., incorrect equations) do not degrade performance.

Our own work [Wang et al., 2023a] further studied the impact of using rationales based on flawed

reasoning, broken down by different categories of flaws. For instance, we find that maintaining input query

relevance and rationale coherence is critical, e.g., not keeping keywords from the input query, or using 32

+ 42 = 74 before the introduction of 32 or 42, significantly degrade performance. Nevertheless, as long

as relevance and coherence are maintained, inaccuracies in the underlying reasoning only marginally affect

performance. Notably, this approach preserves 81-91% of the accuracy in arithmetic reasoning and 87-98%

in multi-hop question answering across a range of state-of-the-art models, including text-davinci-002

and text-davinci-003, as well as the largest versions of PaLM and FLAN-PaLM. For further discussion,

see Madaan and Yazdanbakhsh [2022] and Wang et al. [2023a].
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Chapter 3

Nonparametric Language Models

3.1 Overview

This section describes our work on nonparametric LMs, a new class of LMs that include both learned

parameters and a datastore, i.e., a massive collection of raw text documents. During inference, these

models can identify relevant text from the datastore and reason with it, unlike conventional models that must

remember every relevant detail from the training set. These models are called nonparametric, because their

data distribution is not defined by a fixed set of parameters; rather, it is a function of the available data [Siegel,

1957; Hollander et al., 2013]. With complexity that grows as the data grows, they are differentiated from

parametric models, whose complexity is bounded a priori. As noted by Freeman et al. [2002], the term

nonparametric does not imply an absence of parameters but rather indicates that the number and nature of the

effective parameters are flexible and depend on the data.

Nonparametric LMs offer several advantages, as described below.

Parameter efficiency. Conventional models require a large number of parameters in order to memorize

every relevant detail from the training set [Brown et al., 2020a; Rae et al., 2021; Chowdhery et al., 2022].

Nonparametric models remove the need for such extensive memorization since they can look up relevant

information from a datastore. Consequently, they outperform heavily parameterized models, e.g., LMs with

30x more parameters [Raffel et al., 2020] in answering factoid questions (Min et al. [2021a]; Section 3.2.6).

Capturing of long-tail distributions. Standard state-of-the-art models often fail to capture information

within long-tail distributions in the training data. Nonparametric models address this issue by retrieving

relevant information at test time, significantly improving accuracy in long-tail distribution data, as shown

in Mallen et al. [2022]; Min et al. [2023b]. This is also evident in commercial systems; for instance, our

findings in Min et al. [2023a] demonstrate that factual accuracy in writing biographies increases from 58%

with ChatGPT to 72% with PerplexityAI (ChatGPT with a search engine that uses a web datastore).
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Ease of updating. Conventional models are strictly inflexible and remain stale once training is completed. In

contrast, nonparametric LMs are more flexible by design since the datastore can be altered at any time, e.g.,

to include up-to-date information without additional training [Min et al., 2021a; Izacard et al., 2022b; Min

et al., 2023b].

Ease of data removal. Removing the effect of specific data from conventional LMs after training is very

challenging. Despite techniques like machine unlearning, [Cao and Yang, 2015; Bourtoule et al., 2020; Jang

et al., 2023b], such models lack guarantees and are difficult to scale. Nonparametric models, however, enable

direct removal of data from the datastore, effortlessly eliminating its influence without requiring additional

training.

Ease of data attributions. Nonparametric models allow inherent data attributions since they are straightfor-

ward to trace, i.e., demonstrate which pieces of text in a datastore contribute to the model prediction. This

lets users verify the model output and sources of information.

A combination of the last two features also helps mitigate legal risks in LM training, which we will discuss

further in Chapter 4.

The concept of integrating an LM with a text datastore is not new and has been extensively studied in

prior research [Chen et al., 2017; Gu et al., 2018; Song et al., 2018; Tian et al., 2019]. We provide background

context in Section 3.2.3 and discuss key contributions we made for a nonparametric approach within the

context of language models.

In Section 3.2, we will discuss retrieval augmentation, which operates in two stages—(1) retrieving

small amount of text from a datastore, and (2) feeding it to the LM as an additional input (Figure 3.1 (a)).

While the approach is highly intuitive and resembles how humans use a search engine to find relevant

information and process it, it is challenging to efficiently train a neural model to reason with a large-scale

datastore. We introduced a series of first retrieval-augmented models that addressed these challenges and

has subsequently prompted active follow-up research [Karpukhin et al., 2020; Min et al., 2019b, 2021a; Shi

et al., 2024b,a]. One notable model, Dense Passage Retrieval (DPR) [Karpukhin et al., 2020], opened up a

new era in neural retrieval by showing its promises over traditional, lexical matching-based retrieval. This

was done by introducing a new contrastive objective that helps the model distinguish relevant text against

irrelevant-but-distracting text. We also improved the second stage of retrieval augmentation by training

the LM to condition on a set of relevant documents, thereby making better use of text retrieved from a

datastore [Shi et al., 2024a]. Altogether, this approach improves performance on a wide range of tasks (e.g.,

providing more factual text) and handles rarely seen concepts and facts much better, even when compared to

state-of-the-art commercial LMs like GPT-3 [Shi et al., 2024b]. They are also easily updated, as we showed

for the first time [Min et al., 2021a], and significantly reduce the model size.

While retrieval augmentation has made significant impact in both academia and industry, whether it is the

optimal approach for using the datastore remains an open question. Specifically, the design of the architecture
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LM
Retrieval …“Avada Kedavra!” A 

jet of green light issued 
from Voldemort’s wand

“Avada Kedavra!” A jet of green light issued …
… move and a flash of green light and .

… as a jet of red light blasted from Harry’s
… is operated or driven by a jet of water.

A yellow signal light warns you that …

NPM

datastoredatastore

green
red

yellow
water

…

Harry felt … on the floor as a jet of [mask] light came flying toward him. Harry felt … on the floor as a jet of [mask] came flying toward him.

(context from the datastore)(a) (b)

Figure 3.1: (a) A retrieval-augmented LM [Karpukhin et al., 2020; Min et al., 2019b, 2021a; Shi et al.,
2024b,a] and (b) an LM with a nonparametric softmax [Min et al., 2023b].

makes it difficult to scale the amount of text retrieved from the datastore each time. Also, as we showed [Min

et al., 2024], performance of these models do not scale as effectively with the datastore size as desired.

In Section 3.3, we will explore an alternative that incorporates the datastore differently—by training

an LM with a nonparametric softmax. Instead of outputting a categorical distribution over words, this

method assigns scores to every word or phrase in the datastore as a nonparametric distribution, e.g., assigning

a high score to ‘green light’ from a Harry Potter book (Figure 3.1 (b)). This approach both uses

the datastore more effectively by incorporating a larger portion of the data at each step and handles rare

concepts better, assigning high scores to unseen tokens or phrases if their surrounding context is relevant.

We introduce NPM [Min et al., 2023b], one of the first such models. Training NPM at scale posed several

technical challenges: for instance, scoring all phrases in large-scale data for every training iteration is very

expensive. To address this, we designed novel techniques such as scalable batching and a training objective

that effectively approximates a distribution over the full corpus. Our empirical results demonstrate that NPM

outperforms alternatives on a range of tasks, is especially effective in handling rare concepts (such as rare

entities and facts), and can grow and be updated by expanding and replacing the datastore. Notably, this

approach scales and generalizes better than retrieval-augmented LMs [Min et al., 2024].

3.2 Retrieval Augmentation

The most popular form of the nonparametric approach is retrieval augmentation.1 Arguably, the history of

retrieval augmentation goes back to information retrieval and its modern definition varies across papers. In

this thesis, we took a definition modified from Tian et al. [2019]: retrieval augmentation leverages results R

from an information retrieval system to augment the input used in an LM. Their objectives are to maximize

P (r|q,R), where q is the input, r is a reasponse, and R is one or a few retreved documents (at most 100 in

practice).

1It is also often called retrieval-augmented generation (RAG), following the term proposed by Lewis et al. [2020b]. In this thesis,
we use the term retrieval augmentation or retrieval-augmented LMs to include models that are not generative.
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In this section, we first discuss Dense Passage Retrieval (DPR), one of the first widely-used neural

retrieval models that led to a wide adaptation of retrieval augmentation. We cover the neural retrieval model

(Section 3.2.2) and how results from this model are incorporated into a language model (Section 3.2.3).

Following this, we outline the experimental setup (Section 3.2.4) and present the results (Section 3.2.5).

DPR initiated discussion on parametric versus nonparametric language models, leading to a competition

on open-domain question answering at NeurIPS 2021—called EfficientQA. We discuss the details of the

competition, including the setup, participating models, results, and analyses (Section 3.2.6). EfficientQA

demonstrated the impact of retrieval augmentation and DPR through the contributions of numerous third-party

participants.

Since then, retrieval augmentation has seen rapid improvements. We discuss subsequent work that has

driven these improvements in Section 3.2.7.

3.2.1 Background

The idea of incorporating the external datastore for end tasks has existed for a long time [Voorhees, 1999;

Teh, 2006; Zhang et al., 2006; Ceri et al., 2013; Zhao and Cho, 2018]. This section provides the background

focusing on using the raw text datastore for NLP tasks in the context of deep neural models.

A series of earlier work has used a deep neural network together with a datastore consisting of a large text

documents, often designed or trained in a task-specific manner [Chen et al., 2017; Gu et al., 2018; Song et al.,

2018; Tian et al., 2019]. Notably, open-domain question answering (QA)—answering a factoid question

without a specific reference document given [Voorhees, 1999]—is one of the tasks that greatly benefits from

retrieval augmentation. Researchers have made progress on different components of retrieval augmentation

for open-domain question answering, including the augmentation method (Chen et al. [2017]; Yang et al.

[2019a,b]; Nie et al. [2019]; Wolfson et al. [2020], and our own work Min et al. [2019a]) and reranking

(Nogueira and Cho [2019], Humeau et al. [2020], and our own work Iyer et al. [2021]) and augmentation

(Chen et al. [2017]; Yang et al. [2019a,b]; Nie et al. [2019]; Wolfson et al. [2020], and our own work Min

et al. [2019a]). Most retrieval augmentation used sparse retrieval including TF-IDF and BM25 [Robertson

et al., 2009], rather than neural-based retrieval.

Neural-based retrieval, called dense retrieval henceforth, has a long history since Latent Semantic

Analysis [Deerwester et al., 1990]. The progress has been centered around how to train the encoder that maps

a query and a document into a vector space, typically using labeled pairs of queries and documents [Yih et al.,

2011; Huang et al., 2013; Gillick et al., 2019]. Such approaches complement the sparse vector methods as

they can potentially give high similarity scores to semantically relevant text pairs, even without exact token

matching. The dense representation alone, however, is typically inferior to the sparse one.

More recent work proposes a pre-training method for a joint training of a dense retrieval model and a

language model [Lee et al., 2019; Guu et al., 2020]. While effective, training of such models is very expensive
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and is difficult to train stably due to engineering complexities and hyperparameters coming from the necessity

to asynchronously re-index the datastore during training.

3.2.2 Method: DPR

Given a collection of M text passages, the goal of our dense passage retrieval (DPR) is to index all the

passages in a low-dimensional and continuous space, such that it can retrieve efficiently the top k passages

relevant to the input question for the reader at run-time. Note that M can be very large (e.g., 21 million

passages in our experiments using the English Wikipedia) and k is usually small, e.g., 100 in our experiments.

Overview

DPR uses a dense encoder EP (·) which maps any text passage to a d-dimensional real-valued vectors and

builds an index for all the M passages that we will use for retrieval. At run-time, DPR applies a different

encoder EQ(·) that maps the input question to a d-dimensional vector, and retrieves k passages of which

vectors are the closest to the question vector. We define the similarity between the question and the passage

using the dot product of their vectors: sim(q, p) = EQ(q)
⊺EP (p).

Encoders. Although in principle the question and passage encoders can be implemented by any neural

networks, in this work we use two independent BERT [Devlin et al., 2019] networks (base, uncased) and take

the representation at the [CLS] token as the output, so d = 768.

Inference. We apply the passage encoder EP to all the passages and index them using FAISS [Johnson

et al., 2019] offline. FAISS is an extremely efficient, open-source library for similarity search and clustering

of dense vectors, which can easily be applied to billions of vectors. At run-time, given a question q, we derive

its embedding vq = EQ(q) and retrieve the top k passages with embeddings closest to vq.

Training

Training the encoders so that the dot-product similarity becomes a good ranking function for retrieval is

essentially a metric learning problem [Kulis, 2013]. The goal is to create a vector space such that relevant

pairs of questions and passages will have smaller distance (i.e., higher similarity) than the irrelevant ones, by

learning a better embedding function.

Let D = {⟨qi, p+i , p
−
i,1, · · · , p

−
i,n⟩}mi=1 be the training data that consists of m instances. Each instance

contains one question qi and one relevant (positive) passage p+i , along with n irrelevant (negative) passages

p−i,j . We optimize the loss function as the negative log likelihood of the positive passage:

L(qi, p
+
i , p

−
i,1, · · · , p

−
i,n) = − log

esim(qi,p
+
i )

esim(qi,p
+
i ) +

∑n
j=1 e

sim(qi,p
−
i,j)

.
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Positive and negative passages. For retrieval problems, it is often the case that positive examples are

available explicitly, while negative examples need to be selected from an extremely large pool. For instance,

passages relevant to a question may be given in a QA dataset, or can be found using the answer. All other

passages in the collection, while not specified explicitly, can be viewed as irrelevant by default. In practice,

how to select negative examples is often overlooked but could be decisive for learning a high-quality encoder.

We consider three different types of negatives: (1) Random: any random passage from the corpus; (2) BM25:

top passages returned by BM25 which don’t contain the answer but match most question tokens; (3) Gold:

positive passages paired with other questions which appear in the training set. Our best model uses gold

passages from the same mini-batch and one BM25 negative passage. In particular, re-using gold passages

from the same batch as negatives can make the computation efficient while achieving great performance. We

discuss this approach below.

In-batch negatives. Assume that we have B questions in a mini-batch and each one is associated with

a relevant passage. Let Q and P be the (B × d) matrix of question and passage embeddings in a batch of

size B. S = QPT is a (B × B) matrix of similarity scores, where each row of which corresponds to a

question, paired with B passages. In this way, we reuse computation and effectively train on B2 (qi, pj)

question/passage pairs in each batch. Any (qi, pj) pair is a positive example when i = j, and negative

otherwise. This creates B training instances in each batch, where there are B − 1 negative passages for each

question.

The trick of in-batch negatives has been used in the full batch setting [Yih et al., 2011] and more recently

for mini-batch [Henderson et al., 2017; Gillick et al., 2019]. It has been shown to be an effective strategy for

learning a dual-encoder model that boosts the number of training examples.

3.2.3 Method: Augmentation

In this section, we describe how we incorporate retrieved passages into a language model.

We implement an end-to-end question answering system in which we can plug different retriever systems

directly. Besides the retriever, our QA system consists of a neural reader that outputs the answer to the

question. Given the top k retrieved passages (up to 100 in our experiments), the reader assigns a passage

selection score to each passage. In addition, it extracts an answer span from each passage and assigns a

span score. The best span from the passage with the highest passage selection score is chosen as the final

answer. The passage selection model serves as a reranker through cross-attention between the question and

the passage. Although cross-attention is not feasible for retrieving relevant passages in a large corpus due to

its non-decomposable nature, it has more capacity than the dual-encoder model sim(q, p). Applying it to

selecting the passage from a small number of retrieved candidates has been shown to work well [Wang et al.,

2019c, 2018b; Lin et al., 2018].
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Specifically, let Pi ∈ RL×h (1 ≤ i ≤ k) be a BERT (base, uncased in our experiments) representation for

the i-th passage, where L is the maximum length of the passage and h the hidden dimension. The probabilities

of a token being the starting/ending positions of an answer span and a passage being selected are defined as:

Pstart,i(s) = softmax
(
Piwstart

)
s
,

Pend,i(t) = softmax
(
Piwend

)
t
,

Pselected(i) = softmax
(
P̂⊺wselected

)
i
,

where P̂ = [P
[CLS]
1 , . . . ,P

[CLS]
k ] ∈ Rh×k and wstart,wend,wselected ∈ Rh are learnable vectors. We compute

a span score of the s-th to t-th words from the i-th passage as Pstart,i(s)× Pend,i(t), and a passage selection

score of the i-th passage as Pselected(i).

During training, we sample one positive and m̃− 1 negative passages from the top 100 passages returned

by the retrieval system (BM25 or DPR) for each question. m̃ is a hyper-parameter and we use m̃ = 24 in all

the experiments. The training objective is to maximize the marginal log-likelihood of all the correct answer

spans in the positive passage (the answer string may appear multiple times in one passage), combined with

the log-likelihood of the positive passage being selected. We use the batch size of 16 for large (NQ, TriviaQA,

SQuAD) and 4 for small (TREC, WQ) datasets, and tune k on the development set. For experiments on small

datasets under the Multi setting, in which using other datasets is allowed, we fine-tune the reader trained on

Natural Questions to the target dataset. All experiments were done on eight 32GB GPUs.

3.2.4 Experimental Setup

In this section, we describe the data we used for experiments and the basic setup.

Wikipedia Data Pre-processing

Following [Lee et al., 2019], we use the English Wikipedia dump from Dec. 20, 2018 as the source documents

for answering questions. We first apply the pre-processing code released in DrQA [Chen et al., 2017] to

extract the clean, text-portion of articles from the Wikipedia dump. This step removes semi-structured data,

such as tables, info-boxes, lists, as well as the disambiguation pages. We then split each article into multiple,

disjoint text blocks of 100 words as passages, serving as our basic retrieval units, following [Wang et al.,

2019c], which results in 21,015,324 passages in the end.2 Each passage is also prepended with the title of the

Wikipedia article where the passage is from, along with an [SEP] token.

2However, Wang et al. [2019c] also propose splitting documents into overlapping passages, which we do not find advantageous
compared to the non-overlapping version.

55



Dataset Train Dev Test

Natural Questions 79,168 58,880 8,757 3,610
TriviaQA 78,785 60,413 8,837 11,313
WebQuestions 3,417 2,474 361 2,032
CuratedTREC 1,353 1,125 133 694
SQuAD 78,713 70,096 8,886 10,570

Table 3.1: Statistics of five QA datasets used in the DPR paper. The two columns of Train denote the original
training examples in the dataset and the actual questions used for training DPR after filtering. See text for
more details.

Question Answering Datasets

We use the same five QA datasets and training/dev/testing splitting method as in previous work [Lee et al.,

2019]. Below we briefly describe each dataset and refer readers to their paper for the details of data

preparation.

Natural Questions (NQ) [Kwiatkowski et al., 2019] was designed for end-to-end question answering. The

questions were mined from real Google search queries and the answers were spans in Wikipedia articles

identified by annotators.

TriviaQA [Joshi et al., 2017] contains a set of trivia questions with answers that were originally scraped from

the Web.

WebQuestions (WQ) [Berant et al., 2013] consists of questions selected using Google Suggest API, where

the answers are entities in Freebase.

CuratedTREC (TREC) [Baudiš and Šedivỳ, 2015] sources questions from TREC QA tracks as well as

various Web sources and is intended for open-domain QA from unstructured corpora.

SQuAD v1.1 [Rajpurkar et al., 2016a] is a popular benchmark dataset for reading comprehension. Annotators

were presented with a Wikipedia paragraph, and asked to write questions that could be answered from the

given text. Although SQuAD has been used previously for open-domain QA research, it is not ideal because

many questions lack context in absence of the provided paragraph. We still include it in our experiments for

providing a fair comparison to previous work.

Selection of positive passages. Because only pairs of questions and answers are provided in TREC,

WebQuestions and TriviaQA3, we use the highest-ranked passage from BM25 that contains the answer as the

positive passage. If none of the top 100 retrieved passages has the answer, the question will be discarded. For

SQuAD and Natural Questions, since the original passages have been split and processed differently than our

pool of candidate passages, we match and replace each gold passage with the corresponding passage in the

candidate pool. We discard the questions when the matching is failed due to different Wikipedia versions or

3We use the unfiltered TriviaQA version and discard the noisy evidence documents mined from Bing.
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Training Model NQ TriviaQA WQ TREC SQuAD

Single BM25+BERT [Lee et al., 2019] 26.5 47.1 17.7 21.3 33.2
Single ORQA [Lee et al., 2019] 33.3 45.0 36.4 30.1 20.2
Single HardEM [Min et al., 2019a] 28.1 50.9 - - -
Single GraphRetriever [Min et al., 2019b] 34.5 56.0 36.4 - -
Single PathRetriever [Asai et al., 2020] 32.6 - - - 56.5
Single REALMWiki [Guu et al., 2020] 39.2 - 40.2 46.8 -
Single REALMNews [Guu et al., 2020] 40.4 - 40.7 42.9 -

Single
BM25 32.6 52.4 29.9 24.9 38.1
DPR 41.5 56.8 34.6 25.9 29.8
BM25+DPR 39.0 57.0 35.2 28.0 36.7

Multi DPR 41.5 56.8 42.4 49.4 24.1
BM25+DPR 38.8 57.9 41.1 50.6 35.8

Table 3.2: QA (Exact Match) Accuracy. The first block of results are copied from their cited papers.
REALMWiki and REALMNews are the same model but pretrained on Wikipedia and CC-News, respectively.
Single and Multi denote that DPR is trained using individual or combined training datasets (all except
SQuAD). For WQ and TREC in the Multi setting, we fine-tune the reader trained on NQ.

pre-processing. Table 3.1 shows the number of questions in training/dev/test sets for all the datasets and the

actual questions used for training the retriever.

3.2.5 Results

Table 3.2 summarizes our final end-to-end QA results, measured by exact match with the reference answer

after minor normalization as in [Chen et al., 2017; Lee et al., 2019]. From the table, we can see that higher

retriever accuracy typically leads to better final QA results: in all cases except SQuAD, answers extracted

from the passages retrieved by DPR are more likely to be correct, compared to those from BM25. For

large datasets like NQ and TriviaQA, models trained using multiple datasets (Multi) perform comparably to

those trained using the individual training set (Single). Conversely, on smaller datasets like WQ and TREC,

the multi-dataset setting has a clear advantage. Overall, our DPR-based models outperform the previous

state-of-the-art results on four out of the five datasets, with 1% to 12% absolute differences in exact match

accuracy. It is interesting to contrast our results to those of ORQA [Lee et al., 2019] and also the concurrently

developed approach, REALM [Guu et al., 2020]. While both methods include additional pre-training tasks

and employ an expensive end-to-end training regime, DPR manages to outperform them on both NQ and

TriviaQA, simply by focusing on learning a strong passage retrieval model using pairs of questions and

answers. The additional pre-training tasks are likely more useful only when the target training sets are small.

Although the results of DPR on WQ and TREC in the single-dataset setting are less competitive, adding more

question–answer pairs helps boost the performance, achieving the new state of the art.
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One thing worth noticing is that our reader does consider more passages compared to ORQA, although it

is not completely clear how much more time it takes for inference. While DPR processes up to 100 passages

for each question, the reader is able to fit all of them into one batch on a single 32GB GPU, thus the latency

remains almost identical to the single passage case (around 20ms). The exact impact on throughput is harder

to measure: ORQA uses 2-3x longer passages compared to DPR (288 word pieces compared to our 100

tokens) and the computational complexity is super-linear in passage length. We also note that we found

k = 50 to be optimal for NQ, and k = 10 leads to only marginal loss in exact match accuracy (40.8 vs. 41.5

EM on NQ), which should be roughly comparable to ORQA’s 5-passage setup.

3.2.6 EfficientQA Competition

In 2020, the year DPR has been introduced, there has been significant progress on large language models,

raising the possibility of representing world knowledge solely in the parameters of a neural model instead of

using a datastore [Roberts et al., 2020]. In this context, we organized the EfficientQA competition, held at

NeurIPS 2020, which required contestants to build self-contained systems that contain all of the knowledge

required to answer open-domain questions. Participants can explore either parameteric or nonparametric

language models to optimize for model performance. However, the competition encouraged systems that

store and access this knowledge using the smallest number of bytes, including code, corpora, and model

parameters. Specifically, EfficientQA had four tracks: 1) best accuracy overall (unconstrained); 2) best

accuracy, system size under 6GiB; 3) best accuracy, system size under 500MiB; 4) smallest system to get 25%

accuracy. These memory budgets were designed to encourage contestants to explore the trade-off between

storing and accessing large datastores or the parameters of neural models.

Key takeaways

The top submissions in each of EfficientQA’s four tracks significantly outperformed the provided baselines.

All top submissions use a retrieval corpus and a neural network answering module. However, the nature of

the retrieval corpus and answering module differs drastically across the tracks (Table 3.3).

Unrestricted and 6GiB tracks. The top submissions to the unrestricted track and the 6GiB track outper-

formed the state-of-the-art baselines from April 2020 by nearly 20%. They achieved this improvement by

combining the state-of-the-art retrieval systems [Karpukhin et al., 2020; Mao et al., 2020a] with answer

generation [Izacard and Grave, 2020]; leveraging the state-of-the-art in text generation [Raffel et al., 2020]

and text encoding [Clark et al., 2020b]; modeling not only text but also tables and lists from Wikipedia; and

combining the extractive and generative answer prediction. The top submissions to the 6GiB track additionally

massively reduced the size of their indexed corpus and made use of the state-of-the-art in compression, with

minimal impact on accuracy.
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Track Model Affiliation Nonparam? Key features

REALM Organizers ✓ ext
Unrest- DPR Organizers ✓ ext
ricted MS UnitedQA Microsoft & Dynamics 365 ✓ ext+gen

FB Hybrid Facebook AI ✓ gen, lists/tables

DPR-subset Organizers ✓ ext, pruned
T5-XL+SSM Organizers ✗ gen

6GiB FB system FAIR-Paris&London ✓ gen, lists, pruned, lrzip compression
Ousia-Tohoku Soseki Studio Ousia, Tohoku U & RIKEN ✓ ext, pruned, ZPAQ compression
BUT R2-D2 Brno U of Technology ✓ ext+gen, pruned

T5-Small+SSM Organizers ✗ gen
500MiB UCLNLP-FB system UCL & FAIR ✓, data augmentation

NAVER RDR NAVER Clova ✓ ext, pruned, single Transformer

25% T5-XL+SSM Organizers ✗ gen
smallest UCLNLP-FB system (29M) UCL & FAIR ✓ data augmentation

Table 3.3: A list of the baselines and systems from participants, along with the team affiliation and key
distinction between systems. Nonparam means whether the model is nonparametric (✓) or parametric (✗).
Key features indicate some of the key features, such as whether the datastore is pruned (pruned), whether
the answer is extracted (ext) or generated (gen), and others. We refer to the original publication [Min et al.,
2021a] for more detailed descriptions of each system.

500MiB and smallest tracks. To get under 500MB, the systems made more drastic changes. The submis-

sion from NAVER Clova drastically reduced the size of their indexed corpus and reused a single Transformer

model for the retriever and the reader, winning the 500MiB track according to the human evaluation. The

even smaller UCLNLP-FB system took a novel approach in generating a large corpus of question-answer

pairs, indexing it, and retrieving the most similar question to the input question. This approach, with two

systems with different sizes in question-answer corpus, won both the 500MiB track and the smallest 25%

track according to the automatic evaluation.

Automatic vs. human evaluation. The human evaluation supports the observation that automatic metrics

often incorrectly penalize correct predictions in the open-domain setting [Voorhees and Tice, 2000; Roberts

et al., 2020]. We also investigate the effect of question ambiguity on evaluation—the questions from NQ

are often ambiguous without the associated evidence document [Min et al., 2020]. We define an annotation

scheme that supports multiple estimations of accuracy, corresponding to different definitions of correctness

for answers to ambiguous questions. Almost all systems’ accuracy increased by 20%-25% under the strictest

definition of correctness. The increase doubled when we relaxed the definition of correctness to permit any

semantically valid interpretation of the question.
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Competition Overview

Data. The competition uses English questions and answers from the Natural Questions dataset [Kwiatkowski

et al., 2019, NQ], the same dataset as the one used in Section 3.2.4.

NQ was collected over the course of 2017 and 2018. For EfficientQA, we introduce a new test and

development set constructed in the same way as the original NQ, but labeled slightly after (early 2019 rather

than through 2018). Our test set was kept hidden from contestants, and submissions were made by uploading

solutions to an automatic leaderboard.

Evaluation metrics: Automatic. The accuracy of each systems’ predicted answers is judged against

reference annotations, annotated by five human workers. We follow the literature in using exact match

between predicted and reference answers after minor normalization [Lee et al., 2019].

Evaluation metrics: Human. Due to the ambiguities inherent in language and question-answering in

general, five reference answers are often not exhaustive, and systems predict correct answers that are judged

incorrect according to the automatic metrics. To rectify this, we sent predictions from each of the systems for

further human rating by three raters, to get a better estimation of accuracy. More specifically, each system

prediction was sent for rating by three separate annotators: 1) the annotator first works on understanding

the meaning and intent of the question (with a web search if necessary). 2) The annotator then determines

whether the question is ambiguous, i.e., whether the question can lead to multiple different answers depending

on factors such as: when the query was asked; where the query was asked; some unspoken intent of the

questioner; or the opinion of the person giving the answer. 3) Finally, the annotator determines whether

each answer is “definitely correct” (correct given a usual interpretation of the question), “possibly correct”

(could be correct, given some interpretation of the question),4 or “definitely incorrect”. The final rating is an

aggregation of ratings from three annotators: if at least 2/3 raters determined it to be “definitely correct”, the

label is “definitely correct”. If at least 2/3 raters determined it to be either “definitely correct” or “possibly

correct”, the label is “possibly correct”. The pairwise agreements of the human ratings are 69.2% (Cohen’s

κ = 53.8) for 3-way ratings, 85.7% (Cohen’s κ = 71.4) for whether the prediction is definitely correct or

not, and 76.7% (Cohen’s κ = 53.4) for whether the prediction is possibly correct or not.

Results

All of the five systems in the unrestricted track and the 6GiB track significantly outperform the state-of-the-art

(Table 3.4) at the beginning of the competition—DPR (36.6%) and REALM (35.9%). Systems in the 6GiB

track approach the unrestricted track’s accuracy; for instance, the accuracy FB system is comparable to

4Since the original NQ data was collected more than a year before the start of the EfficientQA competition, the denotation of
some questions may have changed over time (e.g. “who won the last season of bake-off”). Rather than determine a single correct
point in time for these questions, we asked our annotators to assume that the query could have been asked at any time since the web
has existed and choose the “possibly correct” label for answers that may or may not have been correct when the question was asked.
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Track Model Automatic eval
Human eval

Definitely Possibly

Unrestricted
MS UnitedQA 54.00 65.80 (+21.9%) 78.12 (+44.7%)
FB Hybrid 53.89 67.38 (+25.0%) 79.88 (+48.2%)

6GiB
FB system 53.33 65.18 (+22.2%) 76.09 (+42.7%)
Ousia-Tohoku Soseki 50.17 62.01 (+23.6%) 73.83 (+47.2%)
BUT R2-D2 47.28 58.96 (+24.7%) 70.33 (+49.2%)

500MiB
UCLNLP-FB system 33.44 39.40 (+17.8%) 47.37 (+41.7%)
NAVER RDR 32.06 42.23 (+31.7%) 54.95 (+71.4%)

25% smallest UCLNLP-FB system (29M) 26.78 32.45 (+21.2%) 41.21 (+53.9%)

Table 3.4: Summary of the result. For human evaluation result, relative improvements over the automatic
evaluation are indicated in parenthesis. Following our analysis of the annotations, we use ‘Definitely correct’
human ratings as a primary metric.

the accuracy of the top systems in the unrestricted track. The improvements in the 500MiB track are also

impressive; both the top two systems significantly beat T5-small (17.6%).

Discrepancy between automatic eval and human eval. Human raters find 13% and 17% of the predictions

that do not match the reference answers to be definitely correct or possibly correct, respectively, overall

increasing the accuracy of the systems. Most systems showed 17–25% and 41–54% improvement in accuracy

when using definitely correct and possibly correct human evaluation respectively, compared to automatic

evaluation metric which only consider exact string match to existing reference answers. An exception is

NAVER RDR, which achieves significantly larger improvements (32% and 71%, respectively). We also

found that when the gap in automatic measure between systems is marginal (around or smaller than 1%),

human evaluation may change the rankings between the models.

Agreement between system predictions. Figure 3.2 (left) shows the agreement between system predictions,

based on exact match in automatic evaluation. The largest agreement is made between FB Hybrid and FB

system, likely because they are both based on DPR and Fusion-in-Decoder. Agreements between systems in

the unrestricted and the 6GiB tracks are generally higher, likely because they are all based on retrieval-reader

framework and pruning Wikipedia does not hurt too much. Two systems in the 500MiB track have smaller

agreement with the other systems, and agree with each other even less.

Ensemble oracle accuracy of the systems. Figure 3.2 (right) reports the ensemble oracle accuracy for

each system pair, which considers a prediction to be correct if either system prediction is correct. The FB

Hybrid & Ousia-Tohoku Soseki pair achieves the highest ensemble oracle accuracy, indicating that their

system predictions are substantially different from each other compared to other pairs with top performing

systems.
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MS UnitedQA

FB Hybrid

FB System

BUT R2-D2

Ousia-Tohoku Soseki

UCLNLP-FB system

FB Hybrid

FB System
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Ousia-Tohoku Soseki

UCLNLP-FB system

NAVER RDR
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MS UnitedQA

FB Hybrid

FB System

BUT R2-D2

Ousia-Tohoku Soseki

UCLNLP-FB system

FB Hybrid

FB System

BUT R2-D2

Ousia-Tohoku Soseki

UCLNLP-FB system

NAVER RDR

Figure 3.2: (Left) Agreement between system predictions. (Right) Ensemble oracle accuracy, which considers
a prediction correct if at least one of the system predictions is correct (based on “definitely correct” human
evaluation).

Qualitative analysis. We present an analysis of the 50 sample questions where at least one prediction does

not match with the gold answer, but is judged as correct by human raters, with a “definitely correct” label or a

“possibly correct” label, respectively. We refer to Section 5.2 of the original publication [Min et al., 2021a],

and summarize the main takeaways here.

First, the automatic evaluation confirms the observation of [Voorhees and Tice, 2000] that it is insufficient

in capturing semantically equivalent answers, which are responsible for 60% of the definitely correct

predictions. Second, ambiguity arises frequently in the questions in different levels, allowing multiple,

semantically different answers to be valid. This is a consistent with [Min et al., 2020], which reported that

around half of the questions in NQ contain ambiguity, due to ambiguous references of entities, events or

properties, or time-dependency of the answer. Based on our human evaluation, annotations on ambiguity

have low agreement rate (61.3%, Cohen’s κ = 22.6), and predictions with the same level of plausibility are

often marked as “definitely correct” or “possibly correct” by different human raters. We note the notions of

“correctness” and “plausibility” are not binary, and are instead often dependent on pragmatic interpretation

of the questioner’s intent. For example, the question “who has the most superbowl rings” could be read as

“which person (including coaches) has the most superbowl rings”, “which player has the most superbowl

rings”, “which team has the most superbowl rings”. All three annotators identified this question as being

ambiguous but they disagreed about the validity of the different readings. The three raters were split three

ways when rating the correct answer (“Pittsburgh Steelers”) for the last interpretation. Meanwhile there were

no “incorrect” ratings, and 2/3 “definitely correct” ratings given to the correct answer (“Tom Brady”) for the

second interpretation, despite the fact that two coaches have more superbowl rings. Clearly, the annotators

are applying some personal interpretation of the questioner’s intent and answer plausibility.
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Model
All Unambiguous Qs

Definitely Possibly Definitely Possibly

MS UnitedQA 65.80 78.12 78.24 81.18
FB Hybrid 67.38 79.88 82.65 85.59
FB system 65.18 76.09 79.12 81.47
Ousia-Tohoku Soseki 62.01 73.83 72.94 75.00
BUT R2-D2 58.96 70.55 69.71 72.06
UCLNLP-FB system 39.40 47.37 42.06 43.24
NAVER RDR 42.23 54.95 49.71 53.24
UCLNLP-FB system (29M) 32.45 41.21 28.53 30.29

Table 3.5: Human evaluation on the original set and a subset of unambiguous questions.

While we believe that many real world questions do require some non-literal assumptions about the

questioner’s intent, and we believe that the natural language processing community should not shy away

from that task, we also acknowledge that there is work to be done in creating better, non-binary, definitions of

correctness.

Performance on unambiguous questions. To better understand the effect of ambiguity on the ranking of

different solutions, we also evaluate system performance on a subset of the questions that are unambiguous.

We define unambiguous questions to be those that (1) have at least three out of five reference answers contain

valid short answers5, and (2) are not labeled as ambiguous by any of three human raters, resulting in 51.5%

of the original set. Table 3.5 shows human evaluation on the original set and this subset of unambiguous

questions. Most systems, except UCLNLP-FB system, achieve higher accuracy on unambiguous questions,

with the first three systems achieving over or near 80%. Unsurprisingly, the gap between “definitely correct”

accuracy and “possibly correct” accuracy is marginal on unambiguous questions.

3.2.7 Subsequent Work

Dense retrieval. Since the introduction of DPR, researchers have significantly improved dense retrieval

models through multiple axes, including the model architecture, the training objective, and the method to

obtain better hard negatives [Xiong et al., 2021a,b; Ding et al., 2021; Gao and Callan, 2021; Zhan et al.,

2021; Gao and Callan, 2022]. Researchers also scaled up dense retrieval, either in terms of training data

(made possible with the introduction of a self-supervised contrastive learning objective [Izacard et al., 2022a;

Ram et al., 2022]) or encoder size [Ni et al., 2022; Neelakantan et al., 2022]. Researchers also combined

dense retrieval with sparse retrieval [Mao et al., 2020b], added late-interaction operations on top of the dual

encoder [Khattab and Zaharia, 2020; Santhanam et al., 2021], and made dense retrieval cross-lingual [Asai

et al., 2021b]. There has also been work that tunes retrieval using signals from an LM after augmentation,

5This follows the original NQ approach of using annotator agreement to set a threshold for high quality answers.
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including our own work [Shi et al., 2024b], which showed its effectiveness over state-of-the-art LLMs like

GPT-3, Instruct GPT-3 and CoDeX.

Augmentation. Subsequent work [Izacard and Grave, 2020; Lewis et al., 2020b] has shown that DPR

can be combined with generation models such as BART [Lewis et al., 2020a] and T5 [Raffel et al., 2020].

In particular, Lewis et al. [2020b] showed the effectiveness of this approach for a range of knowledge-

intensive tasks beyond open-domain QA, including fact verification, dialogue, and slot filling. Izacard et al.

[2022b] proposed a pre-training objective that jointly trains a retrieval model and an LM, further improving

performance.

While this line of work assumes the model can be fine-tuned on a labeled dataset, more recent work

explores the use of retrieval-augmented LMs without fine-tuning. Ram et al. [2023] and Shi et al. [2024b],

concurrently, showed that with prompting of a frozen, large LM with block-box access, retrieval augmentation

can yield improvements over a range of tasks.

Other papers report that out-of-box language models do not necessarily know how to use retrieval results;

they often ignore retrieval results when they need to, or become easily distracted by incorrect retrieval results.

Recent work proposed various ways to manage these issues, e.g., through post hoc verification [Asai et al.,

2024] or by filtering retrieved results before the augmentation stage [Wang et al., 2023b].

Pre-training. More recently, we proposed a new pre-training objective, called in-context pre-training [Shi

et al., 2024a], that closely resembles retrieval augmentation. The key idea is to train an LM on a sequence of

relevant documents obtained from an off-the-shelf retrieval model, thereby explicitly encouraging the LM to

learn to condition on a set of retrieved documents. Unlike prior work in joint training [Lee et al., 2019; Guu

et al., 2020; Izacard et al., 2022b], in-context pre-training is very straightforward since it does not require

asynchronously re-indexing the datastore, and can be achieved simply by changing the document ordering and

directly applying existing pre-training pipelines. We trained LMs with 1B and 7B parameters from scratch

and showed significant improvements in open-domain question answering with retrieval augmentation, while

also achieving benefits such as in-context learning and long-context language modeling.

3.3 Nonparametric Prediction

So far, we discussed retrieval augmentation (in this section, “retrieve-then-generate”) as one category of a

nonparametric LM that operates as a function of the data given at test time. As we discussed in Section 3.2,

these models retrieve text from the datastore which are subsequently fed into the parametric LM. However,

their final predictions are still made by a parametric model. In particular, they still include a softmax over a

finite vocabulary, which limits expressivity [Yang et al., 2018a] and can make them reluctant to predict rare

or unseen tokens (e.g., Thessaloniki).
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Item delivered broken. Very cheaply made and does not even function.

10/10, would buy this cheap awesome gaming headset again.

Reference Corpus

The Church of Saint Demetrius, or Hagios Demetrios, is the main 
sanctuary dedicated to Saint Demetrius, the patron saint of Thessaloniki.


The Banpo Bridge (Korean: 반포대교) is a major bridge in downtown Seoul.

Encoder

cheaper than an iPod. It was <mask>.

brokencheap construction. It was <mask>.

awesome

Hagios Demetrios is located in <mask>. The ss alon iki

The Korean translation of Banpo Brige is <mask>. ㅏㅂ ㅛ…
(12 tokens)

Figure 3.3: An illustration of NPM. The encoder maps a masked sentence into a dense vector, and retrieves the
nearest phrase from a reference corpus. NPM can fill in the [MASK] with multiple tokens, e.g., Thessaloniki
(4 BPE tokens) and unseen words, e.g.,반포대교 (12 BPE tokens).

In this section, we introduce NPM, the first NonParametric Masked Language Model6 that predicts tokens

solely based on a nonparametric distribution over phrases in a text corpus (Figure 3.3). NPM consists of

an encoder that maps the text into a fixed-sized vector, and a reference corpus from which NPM retrieves a

phrase and fills in the [MASK]. It, crucially, does not have a softmax over a fixed vocabulary, but instead has

a fully nonparametric distribution over phrases. This is in contrast to retrieval augmentation that incorporates

nonparametric components in a parametric model [Borgeaud et al., 2022; Izacard et al., 2022b].

Training such a nonparametric model introduces two key challenges: (1) full corpus retrieval during

training is expensive, and (2) learning to predict an arbitrary length phrase without a decoder is non-trivial.

We address the first challenge by using in-batch approximations to full corpus retrieval [Wu et al., 2020;

Zhong et al., 2022b], and the second by extending span masking [Joshi et al., 2020] and a phrase-level

contrastive objective [Oord et al., 2018; Lee et al., 2021].

We perform zero-shot evaluation on 16 tasks including classification, fact probing and question answering.

They include temporal shift and word-level translation tasks that highlight the need to predict new facts or

rare phrases. Results show that NPM is significantly more parameter-efficient, outperforming up to 500x

larger parametric models and up to 37x larger retrieve-and-generate models, particularly in predicting rare

words.

6In nonparametric models, the data distribution is not defined by a fixed set of parameters, but is rather a function of the available
data [Siegel, 1957; Hollander et al., 2013]. Freeman et al. [2002] noted that the term nonparametric does not imply that they are
parameterless, but rather the number and nature of the effective parameters are flexible and depend on the data.
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3.3.1 Background

The idea of using a nonparametric softmax is not new, and has been studied by a series of prior work [Khan-

delwal et al., 2020; Yogatama et al., 2021; Zhong et al., 2022b; Lan et al., 2023]—so-called kNN-LM models.

Our work is heavily inspired by the kNN-LM approach, and can be seen as an extreme version of it with no

interpolation. However, NPM is the first that models a fully nonparametric distribution by entirely removing

the softmax over a finite vocabulary. This offers a range of new functionalities, such as modeling a distribution

over phrases, or predicting rare or unseen words.

Prior work has explored nonparametric inference without training [Khandelwal et al., 2020; He et al.,

2021; Xu et al., 2022], or trained the nonparametric model on the labeled data for a specific downstream

task [Seo et al., 2018, 2019; Lee et al., 2021]. In contrast, NPM is a fully nonparametric language model

without the labeled data and performs a range of tasks zero-shot.

Bottleneck in softmax. Most if not all language models use a softmax function that gives a categorical

probability distribution over a finite vocabulary. Yang et al. [2018a] showed that this softmax is a low-rank

approximation of a high-rank output space, making the model less expressive. Pappas et al. [2020b] discussed

that a fixed output vocabulary makes language models resistant to adaptation to new domains and tasks.

We share the motivation with such prior work and propose to use a nonparametric output space to address

these issues. Moreover, although not explicitly explored in this paper, our work that completely removes the

softmax over the vocabulary can make training more efficient, especially when the vocabulary is large (e.g.,

multilingual models [Conneau et al., 2020]).

3.3.2 NPM: Inference

NPM consists of an encoder and a reference corpus, and models a nonparametric distribution over a reference

corpus (Figure 3.3). The key idea is to map all the phrases in the corpus into a dense vector space using the

encoder and, when given a query with a [MASK] at inference, use the encoder to locate the nearest phrase

from the corpus and fill in the [MASK].

Encoder-only models are competitive representation models [Patel et al., 2022], outperforming the other

two classes of models in classification tasks (Section 3.3.4). However, existing encoder-only models are

unable to make a prediction whose number of tokens is unknown, making their use cases limited without

fine-tuning. NPM addresses this issue, since it can fill in the [MASK] with an arbitrary number of tokens by

retrieving a phrase.

This section describes inference of NPM assuming a learned encoder. Later, we describe how we train

the encoder to map the text into a good vector space (Section 3.3.3).
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qstart
qend

c2

c1

c

10/10, would buy this cheap awesome gaming headset again.

The Church of Saint Demetrius, or Hagios Demetrios, (…) Saint 
Demetrius, the patron saint of Thessaloniki.

Reference Corpus

Vector space… this cheap awesome gaming …

… saint of Thessaloniki.

… saint of Thessaloniki.

c3
… saint of Thessaloniki.

c4

… saint of Thessaloniki.

Hagios Demetrios is located in  [MASK]. qendQuery qstart

Sequence to mask

In the 2010 NFL season, the Seattle Seahawks made history by making it 
into the playoffs despite having a 7–9 record. (…) The Seahawks lost to the 
Bears in their second game, 35–24.


Other sequence in the batch

Russell Wilson's first game against the Seattle Seahawks (…) when they 
lost Super Bowl XLIX to the New England Patriots. In the 2010 season, the 
Seahawks became the first team in NFL history (..)


Masked sequence

In the [masks][maske] NFL season, [masks][maske] made history 
by making it into the playoffs despite having a 7–9 record. (…) The 
Seahawks lost [masks][maske] Bears in their second game, 35–24.

Figure 3.4: (Left) Inference of NPM (Section 3.3.2). Each token in the reference corpus C is mapped into
a dense vector space. At test time, a query is represented as two vectors, qstart and qend, each in the same
vector space. We use a nearest neighbor search to retrieve the start and the end of the phrase using qstart

and qend, respectively. (Right) Our span masking (Section 3.3.3). For simplicity, this figure assumes two
sequences in the batch. Spans to mask out are chosen based on whether there is any co-occurring spans in
other sequences in the batch. Then, each span is replaced with [MASKs][MASKe].

Overview. The encoder maps every distinct phrase in a reference corpus C into a dense vector space. At

test time, the encoder maps the masked query into the same vector space and retrieves phrases from C to fill

in the [MASK]. Here, C does not have to be the same as the training corpus, and can be replaced or scaled at

test time without re-training the encoder.

In practice, there is a significant number of phrases in the corpus, and it is expensive to index all of them.

We therefore use a technique from Lee et al. [2021] that represents a phrase with token representations of the

start and the end of the phrase. In this approach, we index representations of each distinct token in C, and

then at test time, use a k nearest neighbor search for the start and the end of the phrase, separately. Consider

Figure 3.4 (left) as an example. We represent a query with two vectors, qstart and qend. We then use each to

retrieve the start and the end of the plausible phrases—in this case, c1 and c4, which are the start and the end

of Thessaloniki, respectively.

Method. Formally, let C = {c1, · · · , cN} be a reference corpus with N tokens. We first map each token ci

into a contextualized, h-dimensional vector ci ∈ Rh by feeding the text into the encoder and take the vector

that corresponds to each token: c1...cN = Encoder(c1...cN ).

At inference time, NPM is given a query whose t-th token is masked: q1...qt−1,[MASK], qt+1...qL. We

replace [MASK] with two special tokens [MASKs][MASKe] and feed it into the encoder to obtain a list of
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h-dimensional vectors:

q1...qL+1 = Encoder(q1...qt−1,[MASKs],[MASKe], qt+1...qL).

We then take the vector corresponding to [MASKs] and [MASKe] as qstart and qend, respectively.7

qstart = qt,q
end = qt+1.

We then make a prediction via:

argmax
v∗∈V∗

∑
i≤j

I[v∗ = ci:j ]

(
exp(sim(qstart, ci)) + exp(sim(qend, cj))

)
,

where V∗ is a set of possible n-grams defined by the vocabulary V and sim is a pre-defined similarity function

that maps a pair of vectors into a scalar value. In practice, iterating over N tokens is infeasible. We thus

use an approximation using a fast nearest neighbor search for the start and the end separately. Details are

provided in Appendix B.1.1.

The choice of similarity function can be flexible. We follow Zhong et al. [2022b] in using a scaled inner

product sim(h1,h2) =
h1·h2√

h
, where h is a dimension of the token vectors.

3.3.3 NPM: Training

Masking

We extend span masking [Joshi et al., 2020], which masks spans (consecutive tokens) whose length is sampled

from a geometric distribution. Our span masking differs from Joshi et al. [2020] in two ways. First, we mask

spans if they co-occur in the other sequences in the batch to guarantee in-batch positives during training

(Section 3.3.3). For instance, masked spans in Figure 3.4 (right) are ‘2010’, ‘the Seattle Seahawks’ and ‘to

the’ all of which are found in the other sequences. Second, instead of replacing each token in the span with

a [MASK], we replace the whole span with two special tokens [MASKs][MASKe]. For instance, each of

‘2010’, ‘the Seattle Seahawks’ and ‘to the’ is replaced with [MASKs][MASKe]. This is to obtain the start

and the end vectors for each span as we do at inference.

Training Objective

We illustrate an example in Figure 3.5. The masked span is ‘the Seattle Seahawks’, thus the model should

retrieve a phrase ‘the Seattle Seahawks’ from other sequences in the reference corpus when it is given

a query like this at test time. Specifically, we should encourage the [MASKs] vector to be closer to
7This allows obtaining two vectors without encoding the query twice, e.g., unlike Lee et al. [2021]
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… against the Seattle Seahawks as a 
member of (…) In the 2010 season, 
the Seahawks became the first team 
in NFL history to …

In the 2010 NFL season, [masks]
[maske] made history by making it 
into the playoffs despite having a 7–
9 record. 

Vector space

… season, [masks][maske] made…

… against the Seattle Seahawks as a …

… against the Seattle Seahawks as a …

… became the first NFL history to …

… In the 2010 season, theBatch

… season, the Seahawks became the …

… season, [masks][maske] made …

Maximize sim                                                        and sim                                            
… season, [masks][maske] made… … season, [masks][maske] made …

… against the Seattle Seahawks as a … … against the Seattle Seahawks as a …( () ), ,

Figure 3.5: Training of NPM (Section 3.3.3). [MASKs][MASKe] indicates the masked span whose original
phrase is the Seattle Seahawks. We maximize the similarity scores between ...[MASKs][MASKe]... and

...the Seattle Seahawks... , and between ... [MASKs][MASKe] ... and ...the Seattle Seahawks... .

...the Seattle Seahawks... and the [MASKe] vector to be closer to ...the Seattle Seahawks... , while being distant

from other tokens. We train the model to do so by approximating the full corpus as the other sequences in

the batch. Concretely, we train the model to retrieve the start and the end of the span ‘the Seattle Seahawks’

from other sequences in the same batch. Note that our masking strategy ensures that every masked span has a

co-occurring span in the batch.

Formally, consider the i-th sequence in the batch that consists of L tokens, xi = xi1...x
i
L. We denote

x̂i = x̂i1...x̂
i
L as a consequence of span masking over xi. Both xi and x̂i are fed into the encoder, and each

token is mapped into an h-dimensional vector:8

xi
1 · · ·xi

L = Encoder(xi1 · · ·xiL),

x̂i
1 · · · x̂i

L = Encoder(x̂i1 · · · x̂iL).

Now, consider a masked span in xi, represented with [MASKs][MASKe], denoted as x̂it, x̂
i
t+1. We then

denote git as the original n-gram that were replaced by x̂it, x̂
i
t+1.

The training objective for this masked span is defined as

−

(
log

∑
y∈Y+

s (git)
exp(sim(x̂i

t,y))∑
y∈Y+

s (git)∪Y
−
s (git)

exp(sim(x̂i
t,y))

+ log

∑
y∈Y+

e (git)
exp(sim(x̂i

t+1,y))∑
y∈Y+

e (git)∪Y
−
e (git)

exp(sim(x̂i
t+1,y))

)
.

Here, sim(·, ·) is a similarity function defined in Section 3.3.2, and Y+
s (git), Y−

s (git), Y+
e (git) and Y−

e (git) are

start positives, start negatives, end positives and end negatives of git, respectively, which are defined in the

8The unmasked sequence and the masked sequence may have different lengths before padding, but we pad them to have the same
length.
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next paragraph. This objective follows a phrase-level contrastive learning objectives in prior work [Lee et al.,

2021; Ram et al., 2021; Deng et al., 2021; Kulkarni et al., 2022].

The start positives and the end positives are the start and the end of the spans to be retrieved. The

start negatives and the end negatives are tokens that are not the start positives and not the end positives,

respectively.

Y+
s (git) =

{
xjm|git = xjm...xj

m+|git|−1
& i ̸= j

}
,

Y−
s (git) =

{
xjm|git ̸= xjm...xj

m+|git|−1
& i ̸= j

}
,

Y+
e (git) =

{
xjm|git = xj

m−|git|+1
...xjm & i ̸= j

}
,

Y−
e (git) =

{
xjm|git ̸= xj

m−|git|+1
...xjm & i ̸= j

}
.

Here, |git| indicates the length of the span git.

Training Details

Training data. We use English Wikipedia (August 2019) and an English portion of CC-News (Mackenzie

et al. [2020], February 2019) for training, which contains 13B tokens in total. The data is segmented into

sequences, each with up to 256 tokens.

Training. We use the model architecture and initial weights of RoBERTa large [Liu et al., 2019], consisting

of 354M parameters. Training is done for 100,000 steps, using thirty-two 32GB GPUs. One batch consists of

512 sequences (131,072 tokens). We use an Adam optimizer [Kingma and Ba, 2014] with a learning rate of

3× 10−5, weight decay of 0.01 and 4, 000 steps of warm-up.

Batching. The choice of batching is important in in-batch approximations, as it determines the quality

of positives and negatives. For instance, Zhong et al. [2022b] uses BM25 to ensure the sequences in the

same batch are likely to share the same topic. With a pre-training corpus with billions of tokens, it can

be significantly expensive to build a BM25 index. Therefore, we instead construct the batch by grouping

sequences from the same document and assigning them to the same batch.9 This trick ensures that (a)

positives (spans that share the string) are likely to share the context, reducing false positives, and (b) negatives

are those that the model is likely to be confused with, thus training against them helps the model better

identify positives. During training, we gather all sequences from multiple GPUs to increase the size of the

effective batch and make in-batch approximation more effective.

3.3.4 Experiments: Closed-set Tasks

We perform zero-shot evaluation on closed-set tasks where a small set of candidates is given.
9Documents that are not long enough to construct a batch are grouped with each other.
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Model # Params AGN Yahoo Subj SST-2 MR RT CR Amz RTE Avg

Baselines (encoder-only)
RoBERTa [Gao et al., 2021] 1.0x - - 51.4 83.6 80.8 - 79.5 - 51.3 -
RoBERTa 1.0x 71.3 41.4 67.6 84.5 81.7 81.1 80.4 83.5 57.4 72.1

Baselines (encoder-decoder)
T5 2.2x 72.0 51.3 54.9 57.5 57.7 59.1 56.4 59.3 55.6 58.2
T5 3B 8.5x 80.5 53.6 54.8 59.6 58.6 57.3 53.7 57.0 58.5 59.3

Baselines (decoder-only)
GPT-2 [Shi et al., 2022] 2.2x 67.4 49.7 60.8 55.3 54.6 53.0 66.2 57.6 53.1 57.5

+ PMI [Shi et al., 2022] 2.2x 65.1 48.8 62.5 76.5 74.6 74.1 82.8 76.2 54.2 68.3
GPT-2 kNN† [Shi et al., 2022] 2.2x 29.8 37.0 50.0 47.1 49.9 49.1 69.3 57.4 54.1 49.3
GPT-2 kNN-LM† [Shi et al., 2022] 2.2x 78.8 51.0 62.5 84.2 78.2 80.6 84.3 85.7 55.6 73.4
GPT-3 [Holtzman et al., 2021] 500x 75.4 53.1 66.4 63.6 57.4 57.0 53.8 59.4 56.0 60.2

+ PMI [Holtzman et al., 2021] 500x 74.7 54.7 64.0 71.4 76.3 75.5 70.0 75.0 64.3 69.5

Ours (encoder-only, nonparametric)
NPM† 1.0x 74.5 53.9 75.5 87.2 83.7 86.0 81.2 83.4 61.7 76.4

Full fine-tuning (reference)
RoBERTa [Gao et al., 2021] 1.0x - - 97.0 95.0 90.8 - 89.4 - 80.9 -

Table 3.6: Zero-shot results on closed-set tasks. # Params indicates the relative number of model parameters
compared to RoBERTa large (354M). RoBERTa, T5 and GPT-2 are their large variants unless specified
otherwise; GPT-3 is from Davinci, non-instruct. Numbers with citations are taken from the corresponding
papers; numbers without citations are from our own experiments. We run the code provided by Shi et al.
[2022] and Holtzman et al. [2021] for datasets that are not included in the original paper ({Subj} and {Yahoo,
Subj, MR, RT, CR}, respectively). As a reference, we provide results of fine-tuning on the full training dataset
in the last row. † indicates a reference corpus is used. NPM significantly outperforms larger parameters
models.

Evaluation Datasets

We include nine classification datasets that are known for not necessarily requiring factual knowledge:

AGNews [Zhang et al., 2015], Yahoo [Zhang et al., 2015], Subj [Pang and Lee, 2004], SST-2 [Socher et al.,

2013b], MR [Pang and Lee, 2004], Rotten Tomatoes (RT), CR [Hu and Liu, 2004], Amazon polarity (Amz,

McAuley and Leskovec [2013b]) and RTE [Dagan et al., 2005]. The tasks range from topic classifica-

tion and sentiment analysis to subjectivity classification and textual entailment. Statistics are provided in

Appendix B.1.3.

Baselines

We compare with the encoder-only, the decoder-only and the encoder-decoder models with various sizes

(354M to 175B parameters). We include RoBERTa [Liu et al., 2019] as the encoder-only, T5 [Raffel et al.,

2020] as the encoder-decoder, and GPT-2/3 [Radford et al., 2019; Brown et al., 2020a] as the decoder-only

model. For the decoder-only models, we additionally apply PMI [Holtzman et al., 2021] for better calibration
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RoBERTa
cheaper than an iPod. It was <mask>.

cheap construction. It was <mask>.

Positive

Positive

NPM SINGLE
cheaper than an iPod. It was <mask>.

cheap construction. It was <mask>.

Positive

Negative

Sim(cheap, <m>)

Sim(cheap, <m>)

Sim(cheap, cheap)

Sim(<m>,  <m>)

= 27.3

= 27.5

= 28.0

= 27.9

Sim(cheap, <m>)

Sim(cheap, <m>)

Sim(cheap, cheap)

Sim(<m>,  <m>)

= 28.8

= 28.5

= 15.9

= 15.7

Sentiment analysis: {positive, negative} with fuzzy verbalizers

Retrieved context for <mask>:

10/10, would buy this cheap awesome gaming headset again.

Retrieved context for <mask>:

Item delivered broken. Very cheaply made and does not even function.

Figure 3.6: Predictions from RoBERTa (baseline) and NPM. The bottom indicates the context NPM retrieves
to fill in [MASK]. Note that the fuzzy verbalizer maps broken to Negative and awesome to Positive.

of the model output. We also compare with Shi et al. [2022] who use kNN inference using GPT-2 with PMI.

In particular, (1) GPT-2 kNN uses kNN inference without training, and (2) GPT-2 kNN-LM interpolates

distributions from GPT-2 and GPT-2 kNN.

Setup

We use the templates and verbalizers from Shi et al. [2022] for all models. When available, we use fuzzy

verbalizers from Shi et al. [2022]. We use a domain-specific reference corpus: a union of the English

Wikipedia and CC News for AGN, Yahoo and RTE, a subjectivity corpus for Subj, and a review corpus

for sentiment classification datasets. Their sizes vary from 15M tokens to 126M tokens. Details are in

Appendix B.1.3. Fast similarity search is done using FAISS [Johnson et al., 2019] with the HNSW index. We

use k = 4096 for inference.

Results

NPM outperforms baselines in the zero-shot setting (Table 3.6). We discuss the results in detail below.

Comparison between baselines. Among parametric models, RoBERTa achieves the best performance,

outperforming larger models including GPT-3. This is perhaps surprising, and is likely because bidirectionality

of the encoder-only model plays a vital role, as claimed in Patel et al. [2022]. The kNN-LM approach from

Shi et al. [2022], which incorporates the nonparametric component to the parametric model, outperforms all

other baselines. Nonetheless, solely relying on retrieval (kNN) performs poorly with GPT-2, suggesting that

using kNN at inference only is limited.

Baselines versus NPM. NPM significantly outperforms all baselines, achieving consistently competitive

performance over all datasets. This indicates that, even for tasks that do not explicitly require external

knowledge, nonparametric models are very competitive.
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Figure 3.7: Zero-shot results on knowledge tasks. The x-axis indicates the relative number of model
parameters in log scale compared to RoBERTa large (354M). NPM outperforms significantly larger parameters
models, either with or without BM25. See Table B.4 in Appendix C.2 for the raw numbers.

Qualitative analysis. Figure 3.6 depicts predictions from RoBERTa and NPM on a sentiment analysis task.

The first example uses cheap to indicate inexpensive, and the second example uses cheap to indicate of very

poor quality. RoBERTa predicts Positive to both, while NPM makes correct predictions by retrieving the

context that uses cheap in the same context as the input.

We also find that representations from NPM lead to better word sense disambiguation. For instance,

RoBERTa assigns a high similarity score between cheap (inexpensive) and cheap (of very poor quality). On

the other hand, NPM successfully assigns a low similarity score between cheap and cheap, even though their

surface forms are the same.

3.3.5 Experiments: Open-set Tasks

We include zero-shot evaluation on open-set tasks whose answer can be any arbitrary-length string.
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Evaluation Datasets

We evaluate on seven datasets: T-REx and Google-RE from LAMA [Petroni et al., 2019], KAMEL [Kalo and

Fichtel, 2022], Natural Questions (NQ, Kwiatkowski et al. [2019]), TriviaQA (TQA, Joshi et al. [2017]),

TempLAMA22
19 and an entity translation task. In particular, TempLAMA requires probing knowledge with

temporal updates, motivated by Dhingra et al. [2022] and Jang et al. [2022a]. The entity translation task

involves a translation of an entity from English to other, non-Latin languages, requiring the model to predict

extremely rare (if not unseen) characters. See Appendix B.1.3 for details and statistics of all datasets.

Baselines

We compare with T5 [Raffel et al., 2020] as the encoder-decoder, and GPT-3 [Brown et al., 2020a] and

OPT [Zhang et al., 2022] as the decoder-only models. The encoder-only models are not applicable for

open-set tasks since the number of tokens to predict is unknown.

Prior work found that a “retrieve-and-generate” approach that concatenates the input and passages from

an off-the-shelf retrieval system is often helpful in knowledge-dependent tasks [Kandpal et al., 2022a]. We

add them as baselines, using up to five passages from BM25 [Robertson et al., 2009].

Setup

For all datasets, we report Exact Match (EM). The LAMA test data is biased toward frequent entities because

they are filtered to only include answers that are single tokens based on BERT [Devlin et al., 2019]. Since we

do not want our evaluation to be biased toward overly frequent entities, we report a micro-averaged accuracy

over the data whose answers are 1, 2, 3 and 4+ grams, respectively. Other datasets do not have such filtering,

therefore we report average EM.

As a reference corpus, we use the English Wikipedia from 08/01/2019, consisting of 810M tokens. For

TempLAMA22
19 , we use the English Wikipedia from 08/01/2022, consisting of 858M tokens.

For NPM, we find combining with sparse retrieval significantly helps, likely because dense retrieval and

sparse retrieval capture complementary features [Karpukhin et al., 2020; Seo et al., 2019]. In particular, we

reduce the search space to the top 3 passages based on BM25 and perform dense search as done in Kassner

and Schütze [2020].

Results

Figure 3.7 show results on five knowledge tasks.

First, performance of parametric models largely depends on the number of parameters, as it has been

claimed in much of prior work [Brown et al., 2020a; Kandpal et al., 2022a]. The retrieve-and-generate

approach that combines parametric models with BM25 significantly improves performance.
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Figure 3.8: Ablation on the size of the reference corpus in NPM, from 41M tokens (5%) to 810M tokens
(100%). There is a strong correlation between the size of the corpus and downstream performance.
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Figure 3.9: Performance on LAMA and TempLAMA tasks, broken down based on the number of BPE splits
of the target entity, which is an indication of rarity of the entities (L:Frequent→R:Rare). NPM outperforms
GPT-3 or T5 more significantly when the target entities are rare.

NPM outperforms or is on par with significantly larger baselines across all datasets. It substantially

outperforms all models on two LAMA datasets, including 500x larger GPT-3 either with or without BM25.

On KML, TQA and NQ, NPM consistently outperforms 37x larger models with or without BM25. This is

impressive given that NPM is not trained on data with questions.

It is also worth noting that sparse retrieval is critical in NPM, e.g., without sparse retrieval, performance

on LAMA-TREx drops from 34.5 to 16.1. We think this is because (1) sparse retrieval and dense retrieval

capture complementary features, and (2) the removal of approximation in search improves search quality. We

think future work can explore completely removing sparse retrieval, as has been done in Lee et al. [2021] to

improve Seo et al. [2019].

Impact of the reference corpus size. Figure 3.8 reports the impact of the size of the reference corpus,

from 41M tokens (5%) to 810M tokens (100%). Performance of NPM is highly correlated with the size of

the reference corpus, strongly suggesting that using a larger reference corpus is important.
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Model #Params Unchanged Changed AVG

Baselines
T5 2.2x 1.9 0.4 1.1
T5 3B 8.5x 1.8 0.4 1.1
OPT 6.7B 19x 2.5 1.0 1.7
OPT 13B 37x 4.9 2.1 3.5

BM25 + T5 2.2x 13.7→14.9 3.0→20.1 17.5
BM25 + T5 3B 8.5x 11.9→12.0 2.2→17.8 14.9
BM25 + OPT 6.7B 19x 10.2→8.2 1.7→11.3 9.7
BM25 + OPT 13B 37x 14.8→14.4 2.8→16.6 15.5

Ours
NPM 1.0x 18.9→19.5 2.9→17.5 18.5

Table 3.7: Results on TempLAMA22
19 , on an un-

changed set, a changed set, and a macro-average over
two, respectively. xx→xx indicates performance
when using the outdated and the updated Wikipedia,
respectively.

Model #Params #L w/o BM25 w/ BM25

Baselines, English-only
T5 2.2x 0.2 1.9
T5 3B 8.5x 0.5 4.4
OPT 6.7B 19x 0.4 22.3
OPT 13B 37x 1.0 24.6

Ours, English-only
NPM 1.0x 52.4

References, Multilingual
mT5 3.4x 101 1.3 19.0
mT5 XL 11x 101 4.1 56.6
BLOOM 3B 8.5x 46 0.0 17.4
BLOOM 7.1B 20x 46 0.1 26.0

Table 3.8: Results on the entity translation task. See
Table B.6 (Appendix C.2) for per-language results. #L
indicates the number of languages multilingual mod-
els are trained on. Bold and Bold indicate the best
among monolingual models and the best including
multilingual models, respectively. NPM significantly
outperforms all existing monolingual models, and ap-
proaches or outperforms larger multilingual models.

Results on temporal knowledge tasks. Table 3.7 reports results on TempLAMA. NPM retains its per-

formance on the unchanged set (18.9 →19.5) and successfully updates its answers on the changed set

(2.9 → 17.5). Its performance is significantly better than the performance of parametric models with up

to 13B parameters, and is on par with a larger model with the retrieve-and-generate approach, which also

successfully updates its answer by leveraging the updated corpus. This is in agreement with prior work that

shows the model with a nonparametric component adapts to temporal updates by replacing the reference

corpus at test time [Izacard et al., 2022b]. Nonetheless, the retrieve-and-generate approach is still significantly

worse than NPM when the target entities are rare, which we show in the next paragraph.

Performance on rare entities. We break down the instances on LAMA and TempLAMA based on the

number of BPE splits of the target entity, e.g., Thessaloniki is one word that is split into 4 BPE tokens, thus

the number of splits is 3. Since BPE splits a word if they are rare, the number of BPE splits indicates the

rarity of the entity. We compare NPM with GPT-3 and BM25+GPT-3 on LAMA, and BM25+T5 (770M and

3B) on TempLAMA, the two most competitive baselines on each dataset.

Figure 3.9 reports results. On LAMA, NPM outperforms GPT-3 fairly consistently, with larger gains as

the number of BPE splits increases. On TempLAMA, while BM25+T5 is competitive on frequent entities

with zero BPE split, it consistently lags behind NPM with ≥ 1 BPE splits. This suggests that NPM is

particularly good at addressing rare entities, compared to not only parametric models without retrieval but

also the retrieve-and-generate approach.
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Results in Entity Translation. Results on the entity translation task are shown in Table 3.8 (per-language

results are reported in Table B.6 of Appendix C.2). T5 and OPT struggle to perform the task, both with

and without BM25 retrieval. that are extremely rare or unseen. In contrast, NPM performs well across all

languages.

In order to better calibrate performance of NPM, we provide reference performance of models that are

purposely trained on the multilingual data—mT5 [Xue et al., 2021] and BLOOM [Scao et al., 2022]. NPM

outperforms 3.4x larger mT5 and 20x larger BLOOM, and approaches 11x larger mT5, even though it is

trained on English. We think strong cross-lingual transferability of NPM is likely because it can retrieve a

phrase based on its surrounding context, even if it has not seen the exact word during training.

3.3.6 Summary & Limitations

We introduced NPM, a nonparametric masked language model that replaces a softmax over the output

vocabulary with a nonparametric distribution over a reference corpus. NPM can be efficiently trained using a

contrastive objective and an in-batch approximation to a full corpus. Zero-shot evaluation on 16 tasks shows

that NPM outperforms significantly larger parametric models. NPM is particularly good at rare patterns (word

senses or facts), scaling and updating at test time, and predicting extremely rare if not unseen characters.

NPM has a few limitations, which we discuss below.

Scaling through the inference corpus. The size of the reference corpus is an additional dimension for

model scale in nonparametric models. In this paper, we scale the corpus up to nearly 1B tokens, which is still

smaller than the training data of very large language models [Brown et al., 2020a; Rae et al., 2021]. We think

future work can scale it further using tools such as Distributed FAISS [Johnson et al., 2019] or ScaNN [Guo

et al., 2020].

Significant memory usage. Using NPM saves GPU compute and memory compared to using models with

more parameters. However, NPM requires more RAM and disk memory due to embeddings of a reference

corpus. For instance, the largest corpus in our experiments (full English Wikipedia) requires 70GB of RAM

and 1.4TB of disk memory. Future work can build more efficient NPM as done in prior work in nearest

neighbor search [Jegou et al., 2010; Norouzi et al., 2012; Ge et al., 2014; Izacard et al., 2020; Yamada et al.,

2021].

Exploration of larger vocabulary. Large vocabulary is known to lead performance gains [Conneau et al.,

2020] but is bounded in memory costs. Previous work explored more efficient softmax approximations [Morin

and Bengio, 2005; Chen et al., 2016; Grave et al., 2017]. Our nonparametric training offers an alternative by

removing the softmax over the vocabulary. With the RoBERTa architecture, increasing the vocab size by

2x makes the baseline training 50% more memory expensive, but does not increase the memory in training
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NPM. However, this paper does not include more systematic evaluation on the effect of large vocabulary.

Future work can explore training NPM with a significantly larger vocabulary to further boost performance.

Extension for generation. Our paper evaluates NPM only on prediction tasks. It is currently non-trivial

to use NPM for generation, since it is the encoder-only model. Future work can explore autoregressive

generation as done in Patel et al. [2022] or use NPM for editing [Schick et al., 2022; Gao et al., 2022].

Extension to few-shot learning and fine-tuning. Our paper focuses on zero-shot evaluation only. Future

work can extend NPM to a few-shot learning setup. In fact, fine-tuning NPM is significantly easier than

fine-tuning larger models such as T5, OPT and GPT-3 which we compare NPM with, and can be explored in

future work.

Better cross-lingual transfer. Our work explored cross-lingual transfer in a limited setup where the

model is trained on monolingual data. We think future work can train multilingual NPM, and explore more

comprehensive cross-lingual evaluation. In fact, nonparametric training may alleviate the burden of collecting

large-scale multilingual corpora since it makes the model less sensitive to the language coverage in the

training data, and may lead to significantly better cross-lingual transfer, as we demonstrate in the entity

translation task.

Limitation in speed. We find that search makes inference considerably slower than the counterpart without

search. We think that (1) search can significantly be faster with better engineering (we use the default

hyperparameters of the FAISS index with no tuning) or better index, and (2) the speed of NPM is still on

par with the speed of significantly larger parametric models that NPM outperforms. Moreover, while not

explored in this work, there has been work that improves inference speed [He et al., 2021; Alon et al., 2022]

that can be applied to NPM. We leave improving inference speed to future work.

3.4 Summary and Future Work

In this section, we discuss nonparametric language models, a new class of LMs with both learned parameters

and a datastore. These models are significantly more parameter efficient and better at capturing long-tail

data distributions because they can retrieve relevant information from a datastore at test time without relying

solely on memorization of the training data through enormous amounts of parameters. Moreover, since the

datastore can be updated at any time with no further training, these models can easily stay up-to-date (e.g., by

keeping the datastore up-to-date) and support opt-out (e.g., by removing datapoints from the datastore).

We highlighted our key contributions to nonparametric language models, namely: (1) we developed

DPR, one of the first widely used dense retrieval models, (2) we organized the EfficientQA competition,

one of the first studies to systemically compare parametric and nonparametric models in various conditions,

including time-shift and memory-constraints, (3) we proposed in-context pre-training, a new pre-training
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objective that resembles retrieval augmentation and substantially improves models with both 1 billion and 7

billion parameters, and (4) we introduced NPM, one of the first models trained with a nonparametric softmax,

exploring an alternative method for incorporating the datastore beyond conventional retrieval augmentation.

Despite significant progress in nonparametric language models, many open questions remain. We

highlight key questions below.

Model architecture for nonparametric LMs. Arguably, the overall architecture of nonparametric LMs

has seen few changes beyond the basic approach of retrieval augmentation, which involves conditioning on a

few retrieved documents. This method has apparent limitations, such as the restricted number of passages that

can be incorporated and the need to retain many unnecessary computations, e.g., attention across multiple

retrieved passages. The nonparametric softmax model, while promising, introduces significant increases in

runtime and memory costs due to a substantial increase in the number of vectors in a datastore.

We believe it is necessary to explore alternative architectures that can incorporate a larger retrieval of

results more frequently and more efficiently. One such attempt is the RETRO model [Borgeaud et al., 2022],

which modifies the attention layers of Transformers to integrate retrieval results in parallel with the input.

This architecture allows for the efficient handling of a vast number of documents with greater frequency,

incorporating many documents in parallel. However, follow-up on this model has been limited because it is

not open-sourced and requires pre-training from scratch. For a comparative analysis of retrieval augmentation,

nonparametric softmax, and RETRO, see Table 3.9.

Another possibility is to leverage advances in long-context LMs, which have seen significant progress

through architectural innovations and systems development. Architectural modifications typically include

either significantly sparsifying attentions or entirely removing the attention mechanism. If these long-context

models could scale to process inputs as large as a trillion tokens, they might effectively act as nonparametric

LMs by processing a datastore of that magnitude. Such models could approximate performing nearest

neighbor searches within the attention layers, which essentially equates to the use of retrieval operations for

each attention operation.

Scaling nonparametric LMs. One key ingredient in the huge success of large LMs is scaling, typically of

the number of parameters and the size of the training data. A central question here is whether nonparametric

LMs can provide an alternative pathway for scaling—the datastore size. To answer this question, we should

ideally scale the datastores to accommodate Internet-scale data consisting of trillions of words—the scale of

modern LMs’ training data. Currently, they accommodate relatively small-scale data (e.g., a few billions of

words) and are thus limited to a specific domain (e.g., Wikipedia) in many cases.

A key obstacle in scaling the datastore lies in scaling the nearest neighbor search algorithm to handle

trillions of vectors while improving its runtime speed. Addressing this challenge necessitates not only NLP

and machine learning research but also collaborative efforts with researchers specializing in computer systems,

algorithms, and databases.
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Retrieval augmentation Nonparametric softmax RETRO

Pros
• Easy to use off-the-shelf retrieval

models and LMs with a black-box
access.

• A single model, without two sep-
arate models.

• Scales better than retrieval
augmentation.a

• Generalizes better to OOD
datastore.a

• Can efficiently encode a large #
of passages, more frequently.

• Easy to use an off-the-shelf re-
trieval model with a black-box
access.b

• Can efficiently encode a large #
of passages, more frequently.

Cons
• Two models, each trained in

isolation.c

• Error propagation issues.
• The # of passages is strictly lim-

ited by the sequence length limit
of LMs.d

• Frequent retrieval significantly in-
creases runtime.

• Has many unnecessary opera-
tions, e.g., attention across mul-
tiple retrieved passages.

• Needs a vector per token (or
phrase) instead of vector per pas-
sage, making the model more ex-
pensive in runtime and memory.e

• Computation used for incorpora-
tion is the least.f

• The LM has to be trained from
scratch.

• Error propagation issues.

Table 3.9: Comparisons of various architectures for nonparametric LMs. Further discussion can be found in
the slides for nonparametric model architectures from the ACL 2023 Tutorial [Asai et al., 2023].
a: Discussed in Section 4.5. b: However, using a different retrieval model may require re-training of a language model.
c: Joint training [Guu et al., 2020; Izacard et al., 2022b] or sequential training [Shi et al., 2024a] can potentially address this issue.
d: A massive long context language model can potentially address this issue.
e: For instance, the number of vectors in a datastore increases by 100x if each passage has 100 tokens. This is equally applicable to
retrieval augmentation or RETRO with multi-vector retrieval [Khattab and Zaharia, 2020; Santhanam et al., 2021; Lee et al., 2024].
f : This is because the incorporation is through a single inner product operation at the final prediction stage, unlike other models that
incorporate retrieval results in every attention layer.

Runtime efficiency of nonparametric LMs. Nonparametric LMs are typically slower than parametric

ones with the same number of parameters due to the additional operation of nearest neighbor searches.

Improving runtime efficiency of this search is critical for speeding up their runtime. Several strategies can

be employed to achieve this, including: (1) systems-level improvements, such as better distributed search,

(2) an approximate nearest neighbor search algorithm with a more optimal trade-off between runtime speed,

memory consumption and accuracy, and (3) the development of caching that is specificially optimized for

next token predictions.
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Chapter 4

Responsible Language Models

4.1 Overview

Large language models (LMs) are under widespread legal scrutiny, in large part because they are trained on

copyrighted content, which may infringe on the rights of data producers [Metz, 2022; Vincent, 2023; J.L. et

al. v. Alphabet Inc., 2023; Brittain, 2023]. At the heart of this discussion is the inherent tradeoff between

legal risk and model performance. Training only on data sources such as public domain, non-copyrightable or

otherwise permissively licensed data significantly degrades performance (as we show in §4.5). This limitation

arises from the scarcity of permissive data and its narrow specificity to sources such as copyright-expired

books, government documents, and permissively licensed code, which are largely different from common

LM corpora that cover more diverse domains [Raffel et al., 2020; Gao et al., 2020; Together, 2023].

In this section, we demonstrate it is possible to improve the risk-performance tradeoff by segregating

training data into two distinct parts of the model: parametric and nonparametric (Figure 4.1). We learn LM

parameters on low-risk data (i.e., data under the most permissive licenses), and then use high-risk data (i.e.,

data under copyright, restrictive licenses, or unknown licenses) in an inference-time-only nonparametric

component (called a datastore). With nonparametric datastores, we can retrieve high-risk data to improve

model predictions without training on it. The datastore can be easily updated at any time, and allows creators

to remove their data from the model entirely, at the level of individual examples. This approach also attributes

model predictions at the sentence-level, enabling credit assignment to data owners. These new capabilities

enable better alignment of the model with various data-use regulations, e.g., the fair use doctrine in the United

States [Henderson et al., 2023] and the GDPR in the European Union [Zhang et al., 2023a], as detailed in §4.2.

This is in contrast to parametric models, where removing high-risk data is infeasible after training [Bourtoule

et al., 2020; Carlini et al., 2021] and data attribution at scale is difficult [Feldman and Zhang, 2020; Zhang

et al., 2021; Han et al., 2023].

81



Call me Ishmael. Some 
years ago—never mind 

how long… 

Training
(fixed once training is done)

def tuning(
    model, num_trials):
        assert …

Public Domain

Steve Jobs is an 
American 
business 

magnate and ..

Mr. and Mrs. 
Dursley, of number 
four, Privet Drive, 

were …

OpenAI, maker of 
ChatGPT, hit with 
proposed class 
action lawsuit …

The patient lives with his wife and two daughters.

P(y | x)

Low-risk data
(public domain, permissively-licensed)

High-risk data
(copyrighted, private, attribution required)

Test-time Datastore
(can be updated/removed anytime)

# Copyright (c) Meta Platforms, 
Inc. and affiliates. (...)

from llama import LLaMA

Figure 4.1: An overview of SILO. We train a parametric language model on low-risk datasets that contain
public domain text (e.g., copyright-expired books) and permissively licensed code. At inference time, we use
a nonparametric datastore that can include high-risk data, including medical text with personally-identifiable
information, copyrighted news, copyrighted books, data requiring attribution, and code under non-permissive
licenses (counterclockwise from the top of figure). The datastore can be modified at any time, e.g., to respond
to opt-out requests.

We introduce SILO, a new nonparametric language model that follows our proposal (§4.4). The parametric

component in SILO is trained on a new pre-training corpus, the OPEN LICENSE CORPUS (OLC, §4.3),

which we curate to include data under three types of permissive licenses, from public domain to Creative

Commons. OLC is diverse but has a domain distribution that is very different from typical pre-training

corpora; it is dominated by code and government text. This leads to a new challenge of generalizing a model

trained on highly specific domains, which we call extreme domain generalization. We train three 1.3B-

parameter LMs on varying subsets of OLC, and then construct a test-time datastore that can include high-risk

data, employing a retrieval method to make use of the datastore’s contents during inference. We compare

two widely studied retrieval methods: a nearest-neighbors approach (kNN-LM) that uses a nonparametric

next-token prediction function [Khandelwal et al., 2020] and a retrieval-in-context approach (RIC-LM) that

retrieves text blocks and feeds them to the parametric LM in context [Shi et al., 2024b; Ram et al., 2023].

We evaluate SILO in language modeling perplexity on 14 different domains, covering both in-domain

and out-of-domain data with respect to OLC (§4.5). These domains highlight specific legal risks, e.g.,

copyrighted materials such as books, news and user reviews, or private data such as emails and clinical notes.

We compare SILO to Pythia [Biderman et al., 2023], a parametric LM with a similar parameter count but
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trained mostly on high-risk data [Gao et al., 2020].1 We first show that parametric-only SILO is competitive

on domains covered by OLC but falls short out-of-domain, confirming the challenge of extreme domain

generalization. However, adding an inference-time datastore to SILO effectively addresses this challenge.

Comparing the two methods of retrieving over this datastore, we find that while both kNN-LM and RIC-LM

significantly improve out-of-domain performance, the former generalizes better than the latter, allowing SILO

to reduce the gap with the Pythia baseline by 90% on average across all domains. Further analysis attributes

these improvements to two factors: (1) kNN-LM strongly benefits from scaling the datastore and (2) the

nonparametric next-token prediction in kNN-LM is robust to domain shift. Altogether, our study suggests

that in the few domains where SILO has not yet matched Pythia performance levels, the remaining gaps can

likely be closed by scaling the datastore size and further enhancing the nonparametric model.

4.2 Background

Training datasets for language models. State-of-the-art LMs are trained on vast text corpora that consist

of billions or even trillions of tokens [Brown et al., 2020b; Raffel et al., 2020; Gao et al., 2020; Together,

2023]. These training sets are built by combining (1) manually selected sources such as Wikipedia, book

collections, and GitHub and (2) web pages collected through web-crawling services such as Common Crawl.

Most LM training efforts ignore copyright and intellectual property regulations that apply to these texts.

For example, sources such as GitHub repositories and book collections typically contain text with highly

restrictive licenses [Bandy and Vincent, 2021].

Legality of language models. The legality of training LMs this way has become a subject of intense debate,

with numerous lawsuits being filed in the United States, United Kingdom, and beyond [Gershgorn, 2021;

Metz, 2022; Vincent, 2023; De Vynck, 2023; Silverman et al. v. Meta Platforms, Inc., 2023; J.L. et al. v.

Alphabet Inc., 2023; Silverman et al. v. OpenAI, Inc., 2023; Tremblay et al. v. OpenAI, 2023]. While the

outcome of the lawsuits is uncertain, it is likely that such legal issues will continue to be a major factor in

future LMs, especially since each country has its own data regulations. For example,

• In the United States, the fair use doctrine allows the public to use copyrighted data in certain cases,

even without a license [Henderson et al., 2023]. Deciding whether or not a model’s use of copyrighted

work constitutes fair use involves multiple dimensions, including whether the trained model is intended

for commercial use, whether or not the work is factual or creative, the amount of the copyright content

used, and the value of the copyrighted work. There are claims that using parametric language models

for generative use-cases does not constitute fair use, because the technology may output the copyrighted

text verbatim [Lemley and Casey, 2020], which also has been shown empirically [Carlini et al., 2021,

1The Pile contains a large amount of copyrighted or restrictively licensed data, e.g., most content in its Books3, ArXiv, Github,
OpenWebText, YoutubeSubtitles, and Common Crawl subsets.
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2023; Kandpal et al., 2022b; Chang et al., 2023]. This is in contrast to transformative technologies,

such as classifiers, which may use the copyrighted text but do not directly generate content, which

the fair use doctrine favors. We refer readers to Henderson et al. [2023] for a more comprehensive

discussion.

• The General Data Protection Regulation (GDPR) is a comprehensive data protection and privacy law in

the European Union (EU). It grants individuals more control over their data by regulating organizations

and businesses. The obligations include (1) obtaining consent from users before processing their

data, (2) providing transparency about data processing, (3) ensuring data security, and (4) allowing

individuals to access, correct, and erase their data. GDPR has global impact, as many international

companies handle EU citizens’ data. While it is under debate how GDPR is applied to training language

models, compliance with GDPR is expensive (e.g., requiring retraining for every data correction or

erasure). See Zhang et al. [2023a] for more discussion on challenges for compliance with the GDPR’s

Right to Erasure (and the Right to be Forgotten in general).

The goal of our work is not to weigh in on legal discussions; instead, we study the feasibility of developing

technologies that explicitly manage legal risk. In particular, our technique places all copyrighted data in a

nonparametric datastore. While the data is still used in service of a generative model, restricting copyrighted

data in a datastore and providing instance-level attribution and data opt-out can increase the likelihood of a

successful fair use defense [Henderson et al., 2022].2 Moreover, GDPR’s requirement regarding user data

access, correction, and erasure aligns well with the capabilities of the datastore. Attribution and opt-out are

fundamental features of our model (§4.4.2). This is in contrast to other techniques like post-hoc training

data attribution [Koh and Liang, 2017; Han et al., 2023] and the removal of the effect of particular training

examples from parameters [Cao and Yang, 2015; Jang et al., 2023b], which lack inherent guarantees and are

hard to scale.

Prior work in copyright risk mitigation. The most straightforward approach to avoid copyright infringe-

ment is to filter training data to only include permissive licenses. This has been done in prior work, primarily

for code-based datasets [e.g., Kocetkov et al., 2023; Fried et al., 2023; Together, 2023] and scientific text [e.g.,

Soldaini and Lo, 2023]. Extending a similar approach to a wider range of domains remains unclear, because

permissive data is extremely scarce in most domains, e.g., books and news. For the same reason, Henderson

et al. [2023] has suggested that restricting the training data to public domain or otherwise permissively

licensed data may be impractical. In this work, we show that there is in fact a large number of tokens from

data sources with permissive licenses, but the key challenge instead arises from the highly skewed domain

distribution. See §4.6 for other copyright mitigation strategies that are more technical in nature.

2Our model on its own does not entirely remove legal risk. Rather, it provides functionalities that, when used appropriately, lower
legal risk and strengthen a fair use defense. See §4.6 for a discussion.
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4.3 OPEN LICENSE CORPUS: A Permissively-Licensed pre-training Corpus

Our study focuses on addressing the legal risk of copyright violation in language models by separating

low-risk data sources (i.e., those in the public domain or under permissive licenses) from high-risk ones (i.e.,

those with unknown licenses or under copyright). We introduce the OPEN LICENSE CORPUS (OLC), a

large collection of permissive textual datasets across multiple domains with a taxonomy of data licenses

that delineate their permissiveness (§4.3.1), grouped into three levels of legal permissiveness (§4.3.2). This

curated data is then used to train model parameters (§4.4) and highlights the challenge of extreme domain

generalization due to its skewed domain distribution.

A disclaimer. The license taxonomy and categorization of texts that we present is by no means perfect, and

OLC should not be considered a universally safe-to-use dataset. The license associated with a document may

be time- and country-dependent, e.g., Gutenberg books [Project Gutenberg] are public domain in the United

States, but some of them may still have copyright attached outside of the United States. Moreover, other

legal constraints (e.g., the Digital Millenium Copyright Act)3 may prohibit the use of a data source despite

a permissive data license. Finally, we do not explicitly filter out personally identifiable information from

the corpus, so it is possible that certain subsets still pose privacy risks despite being permissively licensed.

We encourage users of OLC to consult a legal professional on the suitability of each data source for their

application.

4.3.1 Taxonomy of Data Licenses

As discussed in §4.2, determining what data one is permitted to use from a copyright perspective is an

ongoing topic of debate, and is context- and country-dependent [Henderson et al., 2023]. In this paper, we

take a conservative approach where we train models using only text with the most permissible licenses, thus

enabling widespread downstream use. Concretely, we focus on four broad categories:

• Public domain (PD) text has no restrictions. This includes texts whose intellectual property rights

have expired (e.g., the works of William Shakespeare) or been expressly waived by the creator (e.g.,

CC0-licensed scientific papers).

• Permissively licensed software (SW) including MIT, Apache, and BSD software are quite permissive

to use. Unlike public domain text, these licenses typically carry some basic stipulations such as

requiring one to include a copy of the original license (although, it is debatable whether it is still

required when the associated text is used as data or treated as a software). The code is otherwise free to

use, and code is generally well protected by fair use clauses [Lemley and Casey, 2020].

3https://www.copyright.gov/dmca/
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• Attribution licenses (BY) such as Creative Commons Attribution (CC-BY) are free to use as long

as credit is given to the creator. For example, if a journalist quotes an article from Wikipedia (a

CC-BY-SA-3.0 source), then they must provide a form of citation, link, or attribution back to the

original source. In the context of machine learning, it is not clear what an attribution would constitute.

For example, under one interpretation, every LM generation should include a complete list of sources

that contributed highly to it [Henderson et al., 2023]. In this paper, we take a conservative approach

and do not include BY data in the main experiments, but still include the BY data for future use as well

as for ablations, since BY data is generally considered quite permissive.

• All other data that is not in one of the above three categories is assumed to be non-permissive. This

includes: any text that is explicitly protected by copyright or licenses that are non-commercial (e.g.,

CC-NC), any software without clear MIT, BSD, or Apache licenses, and any generic web-crawled data

where the license or copyright information may be unclear.

In §4.4.3, we train the models on varying subsets of licenses—from PD and PDSW to PDBYSW—to

accommodate different risk tolerances.

4.3.2 Building the OPEN LICENSE CORPUS

Based on this taxonomy of licenses, OLC is a 228B token corpus of PD, SW, and BY data. OLC consists of

17 manually-selected sources of primarily English text that are under permissive licenses,4 as summarized in

Table 4.1. The text generally falls into eight different domains:

• PD BY Legal: We curate legal text from the Pile of Law [Henderson et al., 2022], an amalgation of 31

different sources of text related to civil court cases, patents, and other legal and governmental works,

either licensed as public domain or CC-BY. We also gather public domain text from the Case Law

Access Project [Caselaw Access Project, 2018], which covers over 6.5 million decisions published by

state and federal courts throughout U.S. history.

• SW Code: We use the Github subset of the RedPajama dataset [Together, 2023], which contains code

from Github repositories with three permissive software licenses: MIT, Apache, and BSD.

• SW BY Conversation: We source conversational text under permissive software licenses from the

HackerNews (MIT license) and the Ubuntu IRC (Apache license) subsets of the Pile [Gao et al., 2020].

We also use the Stackexchange subset of the RedPajama dataset [Together, 2023] and a Stackoverflow

corpus from Kaggle,5 both under the CC-BY-SA license.

4We include the data in only when the license information is clearly stated as part of metadata. While we tried our best to collect
the data for OLC, it is possible we missed potential sources, as it relies on manual efforts.

5https://www.kaggle.com/datasets/stackoverflow/stackoverflow
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Domain Sources Specific License # BPE Tokens (B)

Legal
PD Case Law, Pile of Law (PD subset) Public Domain 27.1
BY Pile of Law (CC BY-SA subset) CC BY-SA 0.07

Code SW Github (permissive) MIT/BSD/Apache 58.9

Conversational
SW HackerNews, Ubuntu IRC MIT/Apache 5.9
BY Stack Overflow, Stack Exchange CC BY-SA 21.3

Math SW Deepmind Math, AMPS Apache 3.5

Science
PD ArXiv abstracts, S2ORC (PD subset) Public Domain 1.2
BY S2ORC (CC BY-SA subset) CC BY-SA 70.3

Books PD Gutenberg Public Domain 2.9

News
PD Public domain news Public Domain 0.2
BY Wikinews CC BY-SA 0.01

Encyclopedic BY Wikipedia CC BY-SA 37.0

Table 4.1: Overview statistics of OLC. PD, SW, and BY indicates public domain data, data under permissive
software licenses, and data under attribution licenses, respectively. Some corpora contain a mixture of
different licenses (e.g., Pile of Law and S2ORC), which we split into subsets based on per-document licenses.
BPE tokens are based on the GPT-NeoX tokenizer [Black et al., 2022].

• SW Math: We source mathematical text from the Deepmind Mathematics [Saxton et al., 2019] and the

AMPS [Hendrycks et al., 2021] datasets, both of which are under the Apache license.

• PD BY Science: We source scientific text from ArXiv abstracts that are in the public domain [ArXiv,

2023]. We also collect full-text articles from the Semantic Scholar Research Corpus [Lo et al., 2020,

S2ORC], either licensed as public domain or CC-BY.

• PD Books: We source books from the Gutenberg corpus [Project Gutenberg], which are copyright-

expired books that are in the public domain.

• PD BY News: We collect public domain news text from the English subset of the MOT corpus [Palen-

Michel et al., 2022]. We also collect text from Wikinews, which is under CC BY-SA.

• BY Encyclopedic: Finally, we include a large set of Wikipedia from the subset included in RedPa-

jama [Together, 2023]. We follow RedPajama in using Wikipedia snapshots from 20 languages even

though the model primarily focuses on English.

Following Kandpal et al. [2022b]; Lee et al. [2022], we deduplicate text using Groeneveld [2023], a

document-level filter that considers n-gram overlap. We first deduplicate within each domain to remove re-

dundant documents from similar sources (e.g. Case Law and the Pile of Law), and then perform deduplication

against the validation and test datasets of the Pile to avoid test leakage.
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PD PDSW PDSWBY The Pile

Domain Tokens (B) % Tokens (B) % Tokens (B) % Tokens (B) %

Code 0.0 0.0 58.9 59.1 58.9 25.8 32.6 9.8
Legal 27.1 86.2 27.1 27.2 27.2 11.9 30.8 9.3
Conversation 0.0 0.0 5.9 5.9 27.2 11.9 33.1 10.0
Math 0.0 0.0 3.5 3.5 3.5 1.50 7.1 2.1
Books 2.9 9.3 2.9 2.9 2.9 1.3 47.1 14.2
Science 1.2 3.8 1.2 1.2 71.5 31.3 86.0 26.0
News 0.2 0.7 0.2 0.2 0.2 0.1 -† -†

Wikipedia 0.0 0.0 0.0 0.0 37.0 16.2 12.1 3.7
Unverified web 0.0 0.0 0.0 0.0 0.0 0.0 83.1 25.0

Total 31.4 100.0 99.6 100.0 228.3 100.0 331.9 100.0

Table 4.2: OLC is large but its distribution is different from that of typical pre-training corpora like
the Pile. Data distribution of OLC (PD, PDSW, PDSWBY) in comparison to the Pile [Gao et al., 2020], a
common LM training dataset that is not specifically designed for legal permissibility. We report the number
of tokens in billions, and the relative frequency. †: There is no explicit news domain in the Pile, but news
sites are found to be some of the most representative data sources in Common Crawl [Dodge et al., 2021].

In Table 4.2, we compare the distribution of domains in OLC to that of the Pile [Gao et al., 2020], a

popular pre-training corpus that includes data under copyright restrictions (e.g., Books, web crawl).6 These

statistics convey a number of research challenges when working with OLC. First, while we tried our best

to collect public domain or permissively-licensed data, the size of OLC is still 31% smaller than the Pile.

In addition, while the majority of the Pile is sourced from scientific text, web crawl, and books, OLC is

dominated by code, scientific text, and legal text. This highlights that models designed for use outside these

specific domains will likely struggle and may require special techniques for extreme domain generalization.

4.4 SILO

We introduce SILO, which combines an LM trained on permissive data with a nonparametric datastore based

on less restricted data. Our goal with SILO is to build an LM—i.e., a model that takes a prefix of text x and

outputs a next-word probability distribution over the vocabulary P (y | x)—but to do so in a legally safe

way. We first describe the general methodology from prior work (§4.4.1–4.4.2) and then how we build SILO

upon them by placing low-risk data and high-risk data to model parameters and a nonparametric datastore,

respectively (§4.4.3). Implementation details are provided in §4.4.4.

6This comparison also dovetails with our experiments in §4.5, where we compare SILO to Pythia, a model trained on the Pile.
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Figure 4.2: An illustration of a parametric model and two retrieval methods we compare: RIC-LM
and kNN-LM. The orange boxes indicate representations of the input prefix and the tokens in the datastore,
each in Rh and Rh×N , where h is a hidden dimension and N is the number of tokens in the datastore.
The distribution from kNN-LM in the figure describes PkNN; while omitted in the figure, the final output
distribution from kNN-LM is an interpolation between PkNN and the distribution from the parametric LM.
See §4.4.2 for more details of each method.

4.4.1 The Parametric Component

For the parametric component of SILO, we use a standard, dense, decoder-only transformer LM [Vaswani

et al., 2017] using the LLaMA architecture [Touvron et al., 2023]. This model uses a fixed set of parameters

at both training and inference time.

4.4.2 The Nonparametric Component

We experiment with two widely-used retrieval methods for the nonparametric component (Figure 4.2): the

k-nearest neighbors LM (kNN-LM; Khandelwal et al., 2020) and the retrieval-in-context approach (RIC-LM;

Shi et al., 2024b; Ram et al., 2023). Each approach constructs a datastore from the raw text data offline, and

then uses it on-the-fly at inference time.

The k-nearest neighbors language model (kNN-LM). A kNN-LM [Khandelwal et al., 2020] interpolates

the next-token probability distribution from a parametric LM with a nonparametric distribution based on

every token that is stored in a datastore. Given a text dataset consisting of N tokens c1...cN , a datastore is

built by creating a key-value pair for every token ci (1 ≤ i ≤ N ). Specifically, a value is ci and a key ki is

...ci−1, a prefix preceding ci. At test time, given an input prefix x, the nonparametric distribution is computed

89



by:

PkNN(y | x) ∝
∑

(k,v)∈D

I[v = y] (−d(Enc(k),Enc(x))) .

Here, Enc is an encoder that maps a text into Rh and d : Rh × Rh → R is a distance function, where h

is the hidden dimension. We follow Khandelwal et al. [2020] and use the output vector from the last layer

of the transformers in the parametric LM as Enc, L2 distance as d, and an approximate nearest neighbor

search using FAISS [Johnson et al., 2019, details in §4.4.4]. The final model takes the kNN-LM output and

interpolates it with the output from the parametric LM:7 λPLM(y | x) + (1− λ)PkNN(y | x), where λ is a

fixed hyperparameter between 0 and 1.

Future work can improve kNN-LM, e.g., by training the model to output a nonparametric distribu-

tion [Zhong et al., 2022b; Lan et al., 2023; Min et al., 2023b], by having a vocabulary-specific λ [Huang

et al., 2023b], or by modeling λ as a function of the input x [He et al., 2021; Drozdov et al., 2022].

The retrieval-in-context language model (RIC-LM). As an alternative to kNN-LM, RIC-LM [Shi et al.,

2024b; Ram et al., 2023] retrieves text blocks from a datastore and feeds them to the parametric LM in

context. Specifically, given a dataset consisting of N tokens c1...cN , an index D is constructed by splitting

the data into text blocks b1...bM , optionally with a sliding window. At test time, given an input prefix x,

RIC-LM retrieves the most similar paragraph to the prefix p̂ = argmaxb∈D sim(b, x) and concatenates it to

the prefix to produce PLM(y | b̂, x). Here, sim is a function that computes a similarity score between two

pieces of text; we use BM25 following Ram et al. [2023] who show that BM25 outperforms alternative dense

retrieval methods.

Future work can improve RIC-LM, e.g., by using multiple text blocks through ensembling [Shi et al.,

2024b] or reranking [Ram et al., 2023], by tuning the retrieval system [Shi et al., 2024b], or by training the

LM to use retrieved blocks in context [Guu et al., 2020; Izacard et al., 2022b].

Comparison between kNN-LM and RIC-LM. The key difference between kNN-LM and RIC-LM lies

in how the nonparametric component influences the output. In kNN-LM, it directly impacts the output

distribution, while in RIC-LM, it indirectly influences the output by affecting the input to the parametric

model. kNN-LM intuitively benefits more from a datastore as it provides direct influence to the output and

relies less on the parametric component. Nonetheless, RIC-LM interacts more easily with a parametric

model (i.e., it is applicable to a black-box LM) and offers better speed and memory efficiency (explored in

Appendix C.2.2).

7While the encoder that outputs PkNN(y | x) and the parametric LM that outputs PLM(y | x) are based on the same transformer
models in this case following Khandelwal et al. [2020], it is not a necessary condition. One of our ablations in §4.5.2 use different
transformer models for the encoder and the parametric LM.

90



Empirical comparisons between kNN-LM and RIC-LM have been largely unexplored; in fact, we are

unaware of such work. In our experiments (§4.5.2), we present a series of such comparisons, with varying

sizes of the datastore, and with and without distribution shift.

Attribution and opt-out. Since elements in the datastore that contribute to the model prediction are

transparent, both kNN-LM and RIC-LM offer inherent attributions. Moreover, data removed from the

datastore is guaranteed not to contribute to any model predictions, allowing data owners to remove their data

at the level of individual examples. Both are unique characteristics of nonparametric language models. While

prior work studies post-hoc attribution to the data used for training model parameters [Koh and Liang, 2017;

Han et al., 2023] and removing the effect of specific training examples from parameteric models [Cao and

Yang, 2015; Jang et al., 2023b], they are arguably not fundamental due to lack of inherent guarantees, and are

difficult to scale.

4.4.3 Building SILO

SILO is is built upon the general methodology of kNN-LM and RIC-LM. However, unlike prior work that

uses the same data for learning model parameters and a nonparametric datastore, SILO uses distinct datasets

for these two components.

The key idea behind SILO is to use low-risk data to estimate model parameters, and to use high-risk data

only in a nonparametric datastore. This is based on the motivation that model parameters should be learned

conservatively, since training data is difficult to remove or trace after model training is completed. In contrast,

a nonparametric datastore offers greater flexibility, as it can be easily updated, grown, or filtered, supports

data opt-out at the level of individual examples, and provides attributions for free to every model prediction.

These functions enable adherence to data-use regulations (§4.2).

Training datasets. We train each of our LMs on one of the three datasets of OLC: PD data, PDSW data, and

PDSWBY data. Each of the resulting models constitutes a different level of possible copyright infringement

risk.

Datastore. We assume in-distribution data for each test domain is available at inference time, and construct

a datastore for each domain (details in §4.4.4). Future work may investigate building a single datastore that

includes all domains. These test-time datasets can be either in-domain or out-of-domain with respect to the

data used to train model parameters.

4.4.4 Implementation Details

LM architecture and training details. We use 1.3B-parameter transformer LMs based on the LLaMA

architecture [Touvron et al., 2023] as implemented in OpenLM.8 Each model is trained with 128 A100 GPUs
8https://github.com/mlfoundations/openlm
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across 16 nodes. Following Muennighoff et al. [2023], we train for multiple epochs in each dataset and

perform early stopping. We train our PD, PDSW and PDSWBY models for 60B, 250B, and 350B tokens in

total, respectively. More details are provided in Appendix C.1.

Domain re-weighting. Since the distribution of OLC is highly skewed (§4.3), we perform a simple

upweighting scheme where we upsample all data that accounts for less than 5% by a factor of 3×, which we

found to work well after a sweep of different settings. More sophisticated domain weighting strategies [Xie

et al., 2023] are of interest but beyond the scope of this work.

Evaluation. We benchmark our models using language modeling perplexity on 14 domains that represent

both in-domain and out-of-domain data with respect to different levels of OLC. This includes: public-domain

legal documents from the FreeLaw Project subset of the the Pile [Gao et al., 2020], a held-out collection

of books from the Gutenberg collection [Project Gutenberg], conversational text from the Hacker News
subset of the Pile, held-out code files from the Github subset of the Pile (most of which are non-permissive

licensed), scientific text of NIH Grant abstracts that are taken from the NIH ExPorter subset of the PILE,

philosophy papers taken from the PhilPapers of the PILE, held-out English Wikipedia articles from the PILE,

news articles from CC-News [Mackenzie et al., 2020], books from BookCorpus2 which is an expanded

version of Zhu et al. [2015], books from Books3 by Presser [2020], random web-crawled pages from

OpenWebText2 [Gokaslan and Cohen, 2019; Gao et al., 2020], emails from the Enron Emails corpus [Klimt

and Yang, 2004], Amazon product reviews from He and McAuley [2016], and finally clinical notes from

MIMIC-III [Johnson et al., 2016] with personal identifiable information (PII) masked out. Our choice of

domains highlights legal risks discussed in the earlier sections, e.g., CC-News, BookCorpus2, Books3 and

Amazon reviews are mostly copyrighted, Github is mostly not permissively licensed,9 and Enron Emails

and MIMIC-III include private text. We merge all text into one stream of text and split them into batches

with a maximum sequence length of 1,024 and a sliding window of 512, a setup that is standard in prior

language modeling literature [Baevski and Auli, 2019; Khandelwal et al., 2020]. For MIMIC-III, which

includes masked personally-identifiable information (PII), we filter out notes where more than 50% of tokens

correspond to PII, and then exclude tokens corresponding to PII when computing perplexity.

Datastore. We construct an in-domain datastore for each test domain based on their training data. For

datasets from the PILE, we consider 10% of the training data. For kNN-LM, each datastore consists of

up to 1 billion h-dimensional vectors (h =2,048). We build an index for fast nearest neighbor search

using FAISS [Johnson et al., 2019]. For RIC-LM, each datastore consists of text blocks with a length of

1,024 and a sliding window of 512. We use BM25 from Pyserini [Lin et al., 2021]. Appendix C.2.2 report

ablations on different implementations of RIC-LM besides the method in §4.4.2. More details, statistics and

hyperparameter values for the datastores are reported in §C.1.

9Kocetkov et al. [2023] estimates about 13% of the Github data is under MIT, Apache, and BSD.
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Eval data PD PDSW PDSWBY Pythia

FreeLaw 5.3 5.7 6.5 5.6
Gutenberg 15.2 12.5 14.1 13.1
HackerNews 38.0 13.7 14.5 13.3
Github 13.5 2.7 2.8 2.4
NIH ExPorter 28.2 19.2 15.0 11.1
PhilPapers 31.7 17.6 15.0 12.7
Wikipedia 28.9 20.3 11.3 9.1
CC News 34.0 23.3 21.2 12.0
BookCorpus2 25.3 19.2 19.6 13.2
Books3 27.2 19.3 18.6 12.6
OpenWebText2 37.8 21.1 18.8 11.5
Enron Emails 18.6 13.2 13.5 6.9
Amazon 81.1 34.8 37.0 22.9
MIMIC-III 22.3 19.0 15.5 13.1

Average 29.1 17.3 16.0 11.4

Table 4.3: Perplexity (the lower the better) of the parametric-only SILO trained on PD, PDSW, and PDSWBY

(without a datastore), compared to Pythia-1.4B, a model trained with similar amounts of compute but on
mostly non-permissive data. We use ■, ■, and ■ to indicate text that is in-domain, out-of-domain, or
out-of-domain but has relevant data in-domain (e.g., high-risk Github code vs. our permissive Github code).
Reported on the test data; see Table C.3 for results on the validation data. Our parametric LMs are
competitive to Pythia in-domain but fall short out-of-domain.

4.5 Experiments

We first evaluate the parametric-only component of SILO trained on the OPEN LICENSE CORPUS (§4.5.1),

and then show the effect of adding a datastore that may contain high-risk text (§4.5.2). For all experiments,

we use the 1.4B Pythia model [Biderman et al., 2023] as a baseline because it is trained with a similar amount

of compute (data size and model parameters), but is trained on mostly high-risk data.10

4.5.1 Results: Parametric Component

Main results. Table 4.3 reports performance of our 1.3B base LMs trained on varying levels of permissively-

licensed data—PD, PDSW, and PDSWBY—as well as Pythia. Overall, our LMs are competitive with Pythia

despite using permissive data only. They are roughly equal quality on in-domain data, e.g., FreeLaw and

Gutenberg, HackerNews in the case of PDSW and PDSWBY, and Wikipedia in the case of PDSWBY. Models

trained on PDSW and PDSWBY are also close to Pythia on Github, likely because the permissively-licensed

code data included in SW has a distribution that is sufficiently close to the distribution of the all Github code.

The largest gaps occur on data that is in-domain for Pythia but out-of-domain for our model, e.g., news,

books, OpenWebText, and emails, and Wikipedia in the case of models besides PDSWBY. This illustrates the

10We use the model checkpoint from https://huggingface.co/EleutherAI/pythia-1.4b-deduped-v0.
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Eval data SILO (PDSW) Pythia

Prm-only kNN-LM RIC-LM Prm-only

Github 2.7 2.4 (-100%) 2.4 (-100%) 2.4
NIH ExPorter 19.2 15.0 (-52%) 18.5 (-9%) 11.1
Wikipedia 20.3 14.5 (-52%) 19.4 (-8%) 9.1
CC News 23.3 8.0 (-135%) 16.8 (-58%) 12.0
Books3 19.3 17.4 (-28%) 18.6 (-10%) 12.6
Enron Emails 13.2 5.9 (-116%) 9.9 (-68%) 6.9
Amazon 34.9 26.0 (-75%) 33.7 (-10%) 23.0
MIMIC-III 19.0 6.6 (-210%) 15.6 (-58%) 13.1

Average 19.0 12.0 (-91%) 16.9 (-27%) 11.3

Table 4.4: Perplexity (the lower the better) of parametric LMs (Prm-only), kNN-LM, and RIC-LM. % in
parentheses indicate a reduction in the gap between the parametric-only SILO and Pythia. As in Table 4.3, ■
indicates in-domain; ■ indicates out-of-domain; ■ indicates out-of-domain but has relevant data in-domain,
all with respect to the training data of the parametric LM. Reported on the test data; see Table C.4 for results
on the validation data. See Table C.2 for the statistics of the datastore. Adding a datastore, with kNN-LM,
effectively reduces the gap between SILO and Pythia.

extreme domain generalization challenge that is present when training on only permissive data, as we hint in

§4.3.

More ablations, including the effect of upsampling low-resource data, and the effect of including and

excluding explicit source code, are provided in §C.2.1.

4.5.2 Results: Adding the Nonparametric Component

Since building legally permissive LMs poses a challenge of extreme domain generalization, our next question

is whether using an in-domain, nonparametric datastore can reduce the gap. We explore this question with

our parametric LM trained on the PDSW subset of OLC; see Appendix C.2.2 for results of models trained on

PD or PDSWBY. All models are evaluated on a subset of 8 out-of-domain datasets to the parametric model:

Github, NIH ExPorter, Wikipedia, CC News, Books3, Enron Emails, Amazon, and MIMIC-III.

Main results. Table 4.4 shows adding the datastore with either kNN-LM- or RIC-LM-based retrieval

improves performance over just using the parameteric component on all domains, but kNN-LM is more

effective than RIC-LM. In most domains, kNN-LM reduces the gap between SILO and Pythia by more

than 50% (on NIH ExPorter, Wikipedia, Amazon) or even outperforms Pythia (on Github, CC News, Enron

Emails, MIMIC-III). Books3 is the domain with the least benefit, on which kNN-LM still reduces the gap by

28%.

Impact of scaling the datastore. Figure 4.3 demonstrates that both kNN-LM and RIC-LM-based retrieval

consistently improves performance as the datastore size increases, with a strong log-linear trend. However,
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Figure 4.3: Impact of scaling the datastore of SILO (PDSW). Perplexity on random 128K tokens from the
validation data reported. The rightmost dots for kNN-LM and RIC-LM in each figure correspond to the final
models used in Table 4.4. Scaling the test-time datastore consistently improves performance over all
domains.

kNN-LM improves performance more rapidly than RIC-LM does, consistently over all datasets. Extrapolating

the trend suggests that, on the domains that SILO has not outperformed Pythia yet, scaling the datastore even

further (with kNN-LM retrieval) may enable it to match Pythia.

Why does kNN-LM outperform RIC-LM? Our next question is why kNN-LM is better than RIC-LM—is

it (a) because kNN-LM is better than RIC-LM in general, or (b) because kNN-LM generalizes out-of-domain

better than RIC-LM does? Our further analysis in §C.2.2 (Figure C.2) reveals that it is both. With Pythia,

where the test data is in-domain, while both kNN-LM and RIC-LM improve performance upon the parametric-

only model, kNN-LM is overall better and scales better than RIC-LM, supporting (a). Both kNN-LM and

RIC-LM improve performance more rapidly with SILO (where the test data is out-of-domain) than with

Pythia, but this trend is much clearer with kNN-LM, supporting (b).

Where does the remaining gap come from? Even when scaling the datastore with kNN-LM, SILO lags

behind Pythia on a few domains. Moreover, a Pythia-based kNN-LM outperforms our model since kNN-LM

improves Pythia as well. There are two possible points of failure in our model for these cases: either the

parametric component (which outputs PLM) struggles out-of-domain, or the encoder (that outputs PkNN)

struggles out-of-domain. To better understand which part of the model contributes to the gap we observe,

we vary SILO with different choices for the parametric component and the encoder. We compare replacing

either the parametric component or the encoder with Pythia. This setup allows us to measure the effects of
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Figure 4.4: Impact of using different parameters on SILO. Perplexity on random 128K tokens from the
validation data reported. The left-most and the right-most models are parametric models, and the other four
models are kNN-LMs, using a datastore with 204.8 million tokens (20% of the datastore we use for the main
experiments). Ours indicates our parametric model trained on the PDSW subset of OPEN LICENSE CORPUS.
Most of the performance degradation comes from using the out-of-domain parametric LM, rather
than using the out-of-domain encoder.

the out-of-domain nature of our parametric component (which is only trained on PDSW subset of OLC) in

each of these components.

Results in Figure 4.4 reveal that most performance gaps come from the LM: performance improves

significantly when the parametric component is replaced with Pythia, given a fixed encoder. In contrast,

performance improvement is relatively marginal when the encoder is replaced with Pythia, given a fixed

parametric component. These results indicate that the parametric component, which gives PLM, is quite

sensitive to domain shift, but the encoder, which provides the nonparametric distribution PkNN, is fairly

robust to extreme domain shift. This also explains why kNN-LM generalizes better than RIC-LM, since

RIC-LM is bottlenecked by the parametric component.

In summary, our analysis highlights two promising directions to further reduce the gap:

1. Scaling the datastore beyond 1 billion tokens, e.g., at the scale of trillions of tokens as in Borgeaud

et al. [2022], as demonstrated by Figure 4.3.

2. Improving the robustness of the model by improving nonparametric techniques or designing a model

that only uses a nonparametric distribution [Min et al., 2023b], as demonstrated by Figure 4.4.

Comparison in runtime speed. Table C.8 in Appendix C.2.2 provides a comparison of the runtime speed

of the parametric LM, RIC-LM, and kNN-LM. There is a strong tradeoff between performance and speed:

both RIC-LM and kNN-LM are considerably slower than the parametric LM, and a larger datastore and
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Eval
SILO (PDSW) Pythia

Prm-only
kNN-LM kNN-LM

Prm-only
w/o HP w/ HP

1 15.9 15.2 13.0 9.6
2 17.7 16.7 12.4 10.0
3 16.5 15.6 11.4 9.5
4 17.7 16.8 12.9 10.1
5 17.8 16.9 13.2 10.2
6 17.4 16.5 12.8 10.1
7 18.8 17.8 15.1 10.9

Avg 17.4 16.5 12.9 10.1

Table 4.5: The effect of data opt-out. Both kNN-LM methods use 1.024B-token on Books3. w/ HP and
w/o HP indicate that the datastore includes or excludes Harry Potter books, respectively. The number (1 to 7)
indicates a different book from the Harry Potter series used as the eval data; this eval book is not included in
the datastore in any case. ■ indicates in-domain; ■ indicates out-of-domain.

more accurate nearest-neighbor search leads to better performance and slower inference. While the speed

is heavily influenced by the hardware used for benchmarking and thus it is difficult to precisely quantify

how much faster one method is compared to the other, this suggests that improving the runtime efficiency of

nonparametric approaches is an important area of future work.

4.5.3 Examples of Data Attribution and Opt-Out

As discussed in §4.2, the design of SILO can better align with various data-use regulations by providing

mechanisms for data attribution during inference and for data owners to remove their data from the model at

any time. This section show examples of such capabilities.

Data opt-out. To showcase the impact of opt-out on model performance, we conduct experiments with

J.K. Rowling’s Harry Potter series. We first identify all seven Harry Potter books from the Books3 corpus of

the Pile. For each book, we calculate the perplexity of SILO using two 1.024B token datastores on Books3,

but one including the remaining six Harry Potter books and the other excluding any Harry Potter books.

This experiment is to see whether excluding Harry Potter books from the former datastore can reduce the

likelihood of generating the leave-out Harry Potter book.

Table 4.5 shows the results. SILO with Harry Potter books in the datastore effectively improves perplexity

over all seven books, closing the gap between the PDSW model and Pythia. However, when the Harry Potter

books are removed from the datastore, the perplexity gets worse, approaching that of the parametric-only LM.

This illustrates that eliminating the effect of the Harry Potter books from the model substantially reduces the

likelihood of generating the leave-out book.
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Test Prefix ‘I - what - dragons?’ spluttered the Prime Minister. ‘Yes, three,’ said Fudge. ‘And a sphinx. Well, good day to
you.’ The Prime Minister hoped beyond hope that dragons and sphinxes would be the worst of it, but no. Less than two years
later, Fudge had erupted out of the fire yet again, this time with the news that there had been a mass breakout from
Test Continuation Azkaban. ‘A mass breakout?’ the Prime Minister had repeated hoarsely.
Retrieved Prefix ‘D’ you know Crouch, then?’ said Harry. Sirius’ face darkened. He suddenly looked as menacing as the
night when Harry had first met him, the night when Harry had still believed Sirius to be a murderer. ‘Oh, I know Crouch all
right,’ he said quietly. ‘He was the one who gave me the order to be sent to
Retrieved Continuation Azkaban - without a trial.’

Test Prefix Terror tore at Harry’s heart... he had to get to Dumbledore and he had to catch Snape... somehow the two things
were linked... he could reverse what had happened if he had them both together... Dumbledore could not have died... (...) Harry
felt Greyback collapse against him; with a stupendous effort he pushed the werewolf off and onto the floor as a jet of
Test Continuation green light came flying toward him; he ducked and ran, headfirst, into the fight.
Retrieved Prefix Voldemort was ready. As Harry shouted, “Expelliarmus!” Voldemort cried, “Avada Kedavra!” A jet of
Retrieved Continuation green light issued from Voldemort’s wand just as a jet of red light blasted from Harry’s ...

Table 4.6: Attribution examples on Harry Potter books. We show the top-1 retrieved context of SILO

(PDSW). Red underline text indicates the next token that immediately follows the prefix. In both examples,
the test data is from the sixth novel and the retrieved context is from the fourth novel in the Harry Potter
series. In the series, Azkaban is the notorious wizarding prison, and the green light is a distinct characteristic
of the Killing Curse, Avada Kedavra.

Attribution examples. To show the attribution feature of our model, Table 4.6 provides qualitative examples

on the top-1 context retrieved by SILO. The model is able to assign a high probability to the ground truth

token by retrieving highly relevant context. It achieves this by leveraging the unique characteristics of the

text within the datastore, such as recognizing that Azkaban refers to the prison and green light is associated

with the Killing Curse in the Harry Potter books.

More qualitative examples on Github, news and emails are illustrated in Table C.9 in Appendix C.2.2.

They highlight that a nonparametric approach addresses specific legal risks that we have discussed earlier,

e.g., it offers per-token attribution for free, and can provide a copyright notice when part of copyrighted text

is being used for the probability distribution.

4.6 Discussion & Future Work

Our work suggests that it is possible to improve the tradeoff between legal risk and model performance when

training LMs. Our approach provides new options for model designers to mitigate the legal risk of LMs, and

empowers stakeholders to have more control over the data that drives these systems. We point out a number

of rich areas for future work, beyond what was mentioned throughout the paper:

Addressing the limitations of SILO. SILO does not completely eliminate legal risk. Instead, it provides

users more control over the model’s generated content and functionalities to better align with legal regulations.

For instance, SILO does not remove the need for obtaining permission to use copyrighted content in a

datastore when providing attribution is not sufficient, but its opt-out capabilities can strengthen fair use
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defense. Moreover, SILO does not prevent copying copyright content from a datastore, but it offers a way

to prevent generating sensitive text [Huang et al., 2023a] or prevent copying the content verbatim. These

functionalities increase the likelihood of a successful fair use defense if used appropriately.

Furthermore, while SILO mitigates copyright and privacy risks, it may exacerbate certain fairness issues,

like toxicity towards marginalized groups and racial biases, especially due to the prevalence of older copyright-

expired books in the training data. Exploring the balance between legal risk mitigation and fairness is an

important future direction.

Finally, our study relies on explicit metadata to identify licenses, which may lead to underestimates of

the amount and diversity of permissively licensed text actually available on the web. Future research may

investigate inferring data licenses from documents in web crawl at scale, which may be an effective way to

build more heterogeneous, permissively licensed corpora.

Introducing novel data licensing approaches. SILO introduces the possibility for data owners to set

different levels of permissivity for learning parameters and for including in a nonparametric datastore. A data

owner might choose to be more permissive about including data in the datastore due to its ease of removal,

ensuring that the excluded data has no influence on model predictions anymore, and its ability to provide

per-prediction attribution. Moreover, we envision that SILO could provide a path forward for data owners

to get properly credited (or be paid directly) every time their data in a datastore contributes to a prediction.

This is orthogonal to recent work that circumvented copyright issues by licensing out training data from data

creators [Yu et al., 2023a].

Investigating other copyright risk mitigation strategies. It is critical to continue to develop new tech-

niques that use copyrighted data while protecting the rights of data owners and subjects. In addition to

nonparametric approaches, there are many other ways to achieve these goals. First, one could train LMs

on copyrighted content but filter and guide their outputs towards text that is non-infringing [Henderson

et al., 2023]. Second, training models with differential privacy [Dwork et al., 2006; Abadi et al., 2016] or

near-access freeness [Vyas et al., 2023] may prevent them from regenerating individual details of copyright

data. Finally, one could provide attributions for standard base LMs using post-hoc attribution methods, e.g.,

influence functions [Koh and Liang, 2017], rather than switching the model class to a retrieval-based model.

All of these methods are complementary and orthogonal to our proposed approach.

Generalizing SILO as a modular language model. Our work is closely related to recent studies on

modular LMs, which have specialized parameters (or experts) trained on different domains [Gururangan et al.,

2022; Li et al., 2022; Gururangan et al., 2023], languages [Pfeiffer et al., 2020, 2022], or tasks [Chen et al.,

2022c; Jang et al., 2023a]. Our work extends modular LMs to include nonparametric datastores, and focuses

on specializing different parts of the model to low- and high-risk subsets of the training data. Legal risks may

also be mitigated with a collection of parametric expert models that are specialized to low- and high-risk data.
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Future work may explore this possibility as well as the usefulness of combining a nonparametric datastore

with parametric experts.

Extending SILO to other modalities. While this work focuses on text-only models, similar methods to

ours could apply to other domains and modalities. For instance, it might be possible to build permissive

text-to-image generative models [Rombach et al., 2022] using compartmentalized public domain pre-training

and retrieval augmentation [Chen et al., 2022a; Golatkar et al., 2023]. We believe such approaches are

especially promising because there are many sources of public domain data in other modalities, e.g., images,

speech, video, and more.

4.7 Summary

We introduce SILO, a language model that mitigates legal risk by learning parameters only on low-risk,

permissively-licensed data (OPEN LICENSE CORPUS), and using an unrestricted nonparametric datastore

during inference. Our approach allows the model designer to use high-risk data without training on it,

supports sentence-level data attribution, and enables data produces to opt-out from the model by removing

content from the datastore. Experiments on language modeling perplexity show that parametric-only SILO

is competitive on domains covered by OPEN LICENSE CORPUS, but falls short out-of-domain when solely

using the parametric component of the model, highlighting the challenge of extreme domain generalization.

We then show that adding a nonparametric datastore to SILO (with kNN-LM retrieval) successfully addresses

this challenge, significantly reducing the gap (or even outperforming) the Pythia baseline that is trained

unrestrictedly. We show that scaling the datastore size is key to the success of the nonparametric approach,

and that the encoder for a nonparametric distribution is significantly more robust to distribution shift than the

parametric component. Our results point to a number of exciting future research directions to develop AI

systems with mitigated legal risk.
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Chapter 5

Conclusion & Future Work

Large language models (LMs), such as ChatGPT, continue to significantly transform the fields of NLP and

AI. By training deep neural models, such as Transformers [Vaswani et al., 2017], with 100 billion or more

parameters using extensive text data (e.g., 100 billion tokens or more), we have developed models capable

of performing a wide range of NLP tasks without the need for task-specific architecture design or training.

These models are already being widely integrated into user-facing production systems, including ChatGPT,

Claude, and Bard.

This dissertation focused on (1) understanding how these models work and (2) rethinking how the next

generation of models should use data at scale.

Chapter 2: Understanding Current Language Models. We discussed how to better understand current

“black-box” LMs and demonstrating how far they can perform on these tasks, focusing on in-context learning

(ICL).

1. We improved LMs’ in-context learning (Section 2.3). We trained LMs with a multi-task objective on a

large collection of tasks and evaluated them on a new task during inference. The key is to train LMs

to condition on k task examples (as ICL typically does) during training and then, at inference time,

condition on new examples about the given task [Min et al., 2022b]. This helps LMs learn to better use

the given examples in order to activate required patterns.

2. We then challenged the widespread belief that ICL allows an LM to acquire new abilities on the fly with

no training. We showed that LMs accurately perform tasks with ICL even when the given examples

are incorrect (Min et al. [2022c]; Lyu et al. [2023]; Wang et al. [2023a]; Section 2.4). This indicates

that LMs perform tasks by relying on patterns present in their training data, which can be activated in a

specific way, rather than by obtaining a new ability on the fly from correctly paired examples.
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3. Together, our work has led a significant body of follow-up work discovering unexpected behaviors

of LMs [Madaan and Yazdanbakhsh, 2022; Wei et al., 2023b; Jang et al., 2022b; Wies et al., 2023;

Lampinen et al., 2022; Pan et al., 2023; Kim et al., 2022; Schaeffer et al., 2023; Zhang et al., 2023b;

She et al., 2023; Turpin et al., 2023] and has also inspired the development of improved models [Chung

et al., 2022; Ivison et al., 2023], as discussed in Section 2.5.

Chapter 3: Nonparametric Language Models. We discussed nonparametric LMs, a new class of LMs

that includes not only learned parameters but also a datastore, i.e., a massive collection of raw text documents.

1. We focused on retrieval augmentation, which first retrieves text pieces from a datastore and feeds them

to the LM (Section 3.2). We introduced Dense Passage Retrieval (DPR) [Karpukhin et al., 2020], one of

the first neural retrieval models that opened up a new era in retrieval augmentation. Its effect is further

demonstrated by a NeurIPS Competition on open-domain question answering [Min et al., 2021a], and

has led to a large body of subsequent work [Lewis et al., 2020b; Xiong et al., 2021a,b; Mao et al., 2020b;

Ding et al., 2021; Gao and Callan, 2021; Izacard et al., 2022a; Zhan et al., 2021; Gao and Callan, 2022;

Asai et al., 2021b; Ni et al., 2022; Ram et al., 2022].

2. We next focused on LMs with a nonparametric softmax (Section 3.3). Instead of outputting a categorical

distribution over words, this method assigns scores to every word or phrase in the datastore as a

nonparametric distribution, first proposed by Khandelwal et al. [2020]. We introduced NPM [Min et al.,

2023b], one of the first work to train an LM with a nonparametric softmax. We showed that NPM

outperforms alternatives on a range of tasks, is especially effective in handling rare concepts (such as

rare entities and facts), and can grow and be updated by expanding and replacing the datastore.

3. We summarized open problems in nonparametric LMs (Section 3.4), including exploring alternative

architectures that incorporate larger retrieval results more frequently and more efficiently (Table 3.9)

and improving runtime efficiency.

Chapter 4: Responsible Language Models. We discussed how to leverage new functionalities of nonpara-

metric LMs to advance responsible data use.

1. We claimed that using all available data on the web raises concerns related to crediting data creators and

complying with legal constraints such as copyrights and the Right to be Forgotten (Section 4.2).

2. We introduced SILO, a nonparametric LM that was trained exclusively on permissively licensed data

and uses copyrighted data in a datastore during inference (Min et al. [2024]; Section 4.3 and 4.4).

SILO improves legal compliance because it (1) helps data creators receive appropriate credit for their

contribution by providing data attributions for every model prediction and (2) enables support for data

opt-out requests through the removal of data from the datastore at any time.
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3. We demonstrated that parametric-only SILO struggles with extreme domain shift; however, adding an

inference-time datastore using a nonparametric softmax addresses this challenge, allowing SILO to

reduce the gap with an existing LM by 90% on average (Section 4.5).

Future Directions

Every future LM should be flexible, up-to-date, and performant with fewer parameters than they currently

have. While we believe a nonparametric LM is one of the most promising directions to achieve this goal,

there are still many open challenges, e.g., how to design these models to be more expressive and efficient (as

explored Section 3.3), and whether they can ultimately open up a new dimension in scaling—a crucial aspect

in the remarkable success of LMs. We believe future research in our field should tackle these challenges

and, ultimately, expand model capabilities to address critical problems, both within natural language (e.g.,

factuality) and beyond (e.g., legality and privacy)—areas that current LMs are far from solving.

Expanding nonparametric LMs. One of the key questions is whether nonparametric LMs can provide an

alternative pathway for scaling—the datastore size. To answer this question, we should scale the datastores to

accommodate Internet-scale data consisting of trillions of words—the scale of modern LMs’ training data.

Currently, they accommodate relatively small-scale data (e.g., a few billions of words) and are thus limited to

a specific domain (e.g., Wikipedia) in many cases. A key obstacle in scaling the datastore lies in scaling the

nearest neighbor search algorithm to handle trillions of vectors while improving its runtime speed. Addressing

this challenge necessitates not only NLP and machine learning research but also collaborative efforts with

researchers specializing in computer systems, algorithms, and databases. Furthermore, nonparametric LMs

should be expanded to handle a wider range of tasks. One notable area is higher-level reasoning, i.e.,

aggregating information from different parts of the data and generalizing to novel scenarios. By removing the

need for memorizing the data in their parameters, nonparametric LMs can sharpen their focus on higher-level

reasoning abilities, which was briefly explored in our work [Press et al., 2023].

Making LMs factual. One of the most critical issues with today’s LMs lies in factuality, e.g., they often

generate false information. This poses a serious concern since the pursuit of acquiring new information is one

of the primary use cases for LMs, and the long-tail distribution of facts severely challenges LMs. There are

three critical challenges. First, we should design models that improve the trade-off between precision (how

accurate a response is) and recall (how much information a response covers). In particular, improving (or even

defining) recall is largely underexplored—I intend to work on this aspect, with AmbigQA [Min et al., 2020,

2021b] as part of an initial effort. Second, we need evaluation methods that are more systematic, rigorous,

and scalable. The challenge arises because a response often consists of a mixture of true and false pieces

of information, each piece requiring costly verification. We built initial work toward this goal [Min et al.,
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2023a], which we have made accessible through a user-friendly package and has gained wide adoption within

just four months of its initial release [Ye et al., 2023c; Sun et al., 2023; Malaviya et al., 2023; Dhuliawala

et al., 2023; Tian et al., 2023; Asai et al., 2024]. Finally, we should develop models that further relax the

assumptions about the queries, e.g., the validity of presuppositions made within a question, which we initiated

in [Yu et al., 2023b]. For instance, the question “How much EU’s development fund is the UK contributing

to?” presupposes that the UK is still a part of the EU, which should be challenged.

Optimizing LMs for societal objectives. As LMs become increasingly prevalent in real-world applications,

researchers are responsible for studying their societal impact, identifying potential harms, and providing

technical solutions, which I plan to actively work on. For instance, developing technical solutions to enhance

LM compliance with legal constraints and enable proper attribution to data creators is very critical, as

explored in [Min et al., 2024]. Moreover, it is critical to develop analysis techniques to understand LMs’

gender, geographical, or political bias, e.g., how the training data and datastores affect model bias differently,

and develop mitigation methods. Finally, we need more work in designing new algorithms that identify and

mitigate privacy concerns in LMs and protect the interests of data creators, LM developers, and users. One of

unexplored research questions is how to protect the data in nonparametric LMs’ datastores in both training

and inference, where techniques like federated learning and differential privacy can be leveraged.
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Chapter A

Appendix: Understanding Current
Language Models

A.1 Details for Section 2.3

A.1.1 Details on Datasets

Table A.1 and Table A.2 report a list of datasets used in Section 2.3. The first 10 rows are for settings described

in Section 2.3.2; the next two rows are for settings used for ablations on the diversity of meta-training tasks

(Table 2.5 of Section 2.3.4); the last two rows are for settings used for ablations on using natural instructions

(Table 2.6 of Section 2.3.4). Bold datasets are target datasets with no overlap in domain with meta-training

tasks. All datasets are taken from CROSSFIT [Ye et al., 2021] (except we exclude datasets that are unavailable

from their repository1 or the scope is notably different from other tasks, e.g., solving math problems or

breaking down compositional questions) and UNIFIEDQA [Khashabi et al., 2020].

How meta-training/target splits are determined. The HR→LR setting is created based on the training

data size as described in Section 2.3.2. Settings involving Classification, NLI and Paraphrase are taken from

CROSSFIT. Settings involving QA are created by combining QA datasets from CROSSFIT and datasets from

UNIFIEDQA. The number of tasks is the largest among recent related work: we have 142 unique tasks, while

Khashabi et al. [2020], Zhong et al. [2021a], Mishra et al. [2022], Wei et al. [2022a] and Sanh et al. [2022]

use 32, 62, 61, 42 and 62 tasks, respectively. References for all datasets are provided in Table A.2. Data and

splits are available at github.com/facebookresearch/MetaICL.

1github.com/INK-USC/CrossFit
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A.1.2 Details on Implementations

Preprocessing details. For all models with meta-training and the raw GPT-J, we separate the input and the

output with one newline (\n), and separate between examples with three newlines. For the raw GPT-2, we

use spaces instead of newlines. This choice was made in order to report the best baseline performance we

were able to achieve: when raw LMs are used, GPT-2 is significantly better with spaces than with newlines,

and GPT-J is significantly better with newlines than with spaces.2 We note that NPM is less sensitive to these

formatting differences, having less than 2% differences between using spaces and using newlines.

When the concatenation of k examples is too long, we truncate each example to have at most 256 tokens,

and truncate the earlier tokens of the concatenation so that the LM sees the recent tokens. Additionally, for

extractive question answering datasets as meta-training tasks, the input passage is truncated with a guarantee

that the groundtruth answer is included in the input passage. We do not do this truncation for target datasets.

A.2 Details for Section 2.4

Example template. We follow Ye et al. [2021]; Min et al. [2022b]; Logan IV et al. [2021] in using the

minimal format to transform the input to a sequence (e.g. a concatenation of multiple inputs) and using the

label words from each dataset as it is. We also explore manual templates taken from prior work [Holtzman

et al., 2021; Zhao et al., 2021] as reported in Section 2.4.2, although we find that using these templates is not

consistently better than using minimal templates. We thus run main experiments with minimal templates.

Example templates are provided in Table A.3.

Format of the demonstrations. We follow the standard of each model for formatting the demonstrations,

either from exploration in prior work or the example code provided in the official tutorial. For GPT-2, we

separate the input and the label, and each demonstration example with a space. For MetaICL, GPT-J and

GPT-3, we separate the input and the label with a newline (\n), and each demonstration example with

three newlines. For fairseq models, we use a newline to separate the input and the label as well as each

demonstration example.

Details in variants of the demonstrations. For “OOD demonstrations”, we use CC-News [Nagel, 2016] as

an external corpus. We consider the length of the text during sampling, so that sampled sentences have similar

length to the test input. For “demonstrations with random English words”, we use pypi.org/project/

english-words for the set of English words, which consists of 61,569 words. Table A.4 provides a list

of example demonstrations for each method used in Section 2.3.4.
2For example, in the HR→LR setting, the raw GPT-2 is about 4% better with spaces then with newlines, and the raw GPT-J is

about 5% better with spaces and then with newlines (all with the channel in-context learning method).
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Setting: HR→LR Meta-train
piqa, hate_speech_offensive, google_wellformed_query, social_i_qa, circa, quoref, glue-sst2, scitail, emo, cosmos_qa, freebase_qa, ag_news, art, paws, kilt_ay2, glue-qnli, quail, ade_corpus_v2-
classification, sciq, hatexplain, emotion, glue-qqp, kilt_fever, kilt_nq, dbpedia_14, kilt_zsre, hellaswag, squad-with_context, hotpot_qa, glue-mnli, ropes, squad-no_context, kilt_hotpotqa, discovery,
superglue-record, race-middle, race-high, lama-trex, swag, gigaword, amazon_polarity, biomrc, tab_fact, tweet_eval-emoji, tweet_eval-offensive, tweet_eval-sentiment, tweet_qa, imdb, lama-
conceptnet, liar, anli, wiki_qa, kilt_trex, wikisql, wino_grande, wiqa, search_qa, xsum, yahoo_answers_topics, yelp_polarity, yelp_review_full

Setting: HR→LR Target
quarel, financial_phrasebank, openbookqa, codah, qasc, glue-mrpc, dream, sick, commonsense_qa, medical_questions_pairs, quartz-with_knowledge, poem_sentiment, quartz-no_knowledge,
glue-wnli, climate_fever, ethos-national_origin, ethos-race, ethos-religion, ai2_arc, hate_speech18, glue-rte, superglue-cb, superglue-copa, tweet_eval-hate, tweet_eval-stance_atheism, tweet_eval-
stance_feminist

Setting: Classification Meta-train
Meta-Train: superglue-rte, tweet_eval-sentiment, discovery, glue-rte, superglue-wsc, glue-mrpc, tweet_eval-stance_hillary, tweet_eval-offensive, emotion, hatexplain, glue-cola, sick, paws,
ethos-sexual_orientation, glue-qqp, tweet_eval-emotion, sms_spam, health_fact, glue-mnli, imdb, ethos-disability, glue-wnli, scitail, trec-finegrained, yahoo_answers_topics, liar, glue-sst2,
tweet_eval-stance_abortion, circa, tweet_eval-stance_climate, glue-qnli, tweet_eval-emoji, ethos-directed_vs_generalized, ade_corpus_v2-classification, hate_speech_offensive, superglue-wic,
google_wellformed_query, tweet_eval-irony, ethos-gender, onestop_english, trec, rotten_tomatoes, kilt_fever

Setting: Non-Classification Meta-train
ade_corpus_v2-dosage, art, biomrc, blimp-anaphor_number_agreement, blimp-ellipsis_n_bar_2, blimp-sentential_negation_npi_licensor_present, blimp-sentential_negation_npi_scope, common-
sense_qa, crows_pairs, dream, freebase_qa, gigaword, hellaswag, hotpot_qa, kilt_ay2, kilt_hotpotqa, kilt_trex, kilt_zsre, lama-conceptnet, lama-google_re, lama-squad, numer_sense, openbookqa,
piqa, proto_qa, qa_srl, quarel, quartz-no_knowledge, race-high, ropes, sciq, social_i_qa, spider, superglue-multirc, wikisql, xsum, yelp_review_full

Setting: Classification Target
tweet_eval-stance_feminist, ethos-national_origin, tweet_eval-hate, ag_news, amazon_polarity, hate_speech18, poem_sentiment, climate_fever, medical_questions_pairs, tweet_eval-
stance_atheism, superglue-cb, dbpedia_14, wiki_qa, emo, yelp_polarity, ethos-religion, financial_phrasebank, tab_fact, anli, ethos-race

Setting: QA Meta-train
biomrc, boolq, freebase_qa, hotpot_qa, kilt_hotpotqa, kilt_nq, kilt_trex, kilt_zsre, lama-conceptnet, lama-google_re, lama-squad, lama-trex, mc_taco, numer_sense, quoref, ropes, search_qa,
squad-no_context, squad-with_context, superglue-multirc, superglue-record, tweet_qa, web_questions, unifiedqa:squad2, unifiedqa:natural_questions_with_dpr_para, unifiedqa:race_string,
unifiedqa:squad1_1, unifiedqa:drop, unifiedqa:newsqa, unifiedqa:narrativeqa, unifiedqa:winogrande_xl, unifiedqa:social_iqa, unifiedqa:quoref, unifiedqa:physical_iqa, unifiedqa:ropes, uni-
fiedqa:commonsenseqa, unifiedqa:boolq

Setting: Non-QA Meta-train
hate_speech_offensive, google_wellformed_query, circa, glue-sst2, scitail, emo, ag_news, art, paws, kilt_ay2, glue-qnli, ade_corpus_v2-classification, hatexplain, emotion, glue-qqp, kilt_fever,
dbpedia_14, glue-mnli, discovery, gigaword, amazon_polarity, tab_fact, tweet_eval-emoji, tweet_eval-offensive, tweet_eval-sentiment, imdb, liar, anli, wikisql, xsum, yahoo_answers_topics,
yelp_polarity, yelp_review_full

Setting: QA Target
ai2_arc, codah, cosmos_qa, dream, hellaswag, openbookqa, qasc, quail, quarel, quartz-no_knowledge, quartz-with_knowledge, sciq, superglue-copa, swag, wino_grande, wiqa, unifiedqa:qasc,
unifiedqa:qasc_with_ir, unifiedqa:openbookqa, unifiedqa:openbookqa_with_ir, unifiedqa:mctest, unifiedqa:ai2_science_middle

Setting: Non-NLI Meta-train
ade_corpus_v2-classification, ag_news, amazon_polarity, circa, climate_fever, dbpedia_14, discovery, emo, emotion, ethos-directed_vs_generalized, ethos-disability, ethos-gender, ethos-
national_origin, ethos-race, ethos-religion, ethos-sexual_orientation, financial_phrasebank, glue-cola, glue-mrpc, glue-qqp, glue-sst2, google_wellformed_query, hate_speech18, hate_speech_offensive,
hatexplain, health_fact, imdb, kilt_fever, liar,
medical_questions_pairs, onestop_english, paws, poem_sentiment, rotten_tomatoes, sick, sms_spam, superglue-wic, superglue-wsc, tab_fact, trec, trec-finegrained, tweet_eval-emoji, tweet_eval-
emotion, tweet_eval-hate, tweet_eval-irony, tweet_eval-offensive, tweet_eval-sentiment, tweet_eval-stance_abortion, tweet_eval-stance_atheism, tweet_eval-stance_climate, tweet_eval-stance_feminist,
tweet_eval-stance_hillary, wiki_qa, yahoo_answers_topics, yelp_polarity
Setting: NLI Target
anli, glue-mnli, glue-qnli, glue-rte, glue-wnli, scitail, sick, superglue-cb

Setting: Non-Paraphrase Meta-train
ade_corpus_v2-classification, ag_news, amazon_polarity, anli, circa, climate_fever, dbpedia_14, discovery, emo, emotion, ethos-directed_vs_generalized, ethos-disability, ethos-gender, ethos-
national_origin, ethos-race, ethos-religion, ethos-sexual_orientation, financial_phrasebank, glue-cola, glue-mnli, glue-qnli, glue-rte, glue-sst2, glue-wnli, google_wellformed_query, hate_speech18,
hate_speech_offensive, hatexplain, health_fact, imdb, kilt_fever, liar, onestop_english, poem_sentiment, rotten_tomatoes, scitail, sick, sms_spam, superglue-cb, superglue-rte, superglue-wic,
superglue-wsc, tab_fact, trec, trec-finegrained, tweet_eval-emoji, tweet_eval-emotion, tweet_eval-hate, tweet_eval-irony, tweet_eval-offensive, tweet_eval-sentiment, tweet_eval-stance_abortion,
tweet_eval-stance_atheism, tweet_eval-stance_climate, tweet_eval-stance_feminist, tweet_eval-stance_hillary, wiki_qa, yahoo_answers_topics, yelp_polarity

Setting: Non-Paraphrase Target
Target: glue-mrpc, glue-qqp, medical_questions_pairs, paws

Setting: HR→LR Diverse Meta-train
glue-mnli, glue-qqp, glue-sst2, hate_speech_offensive, kilt_hotpotqa, kilt_zsre, lama-trex, race-high, scitail, tweet_eval-offensive, wino_grande, yahoo_answers_topics, yelp_review_full

Setting: HR→LR No Diverse Meta-train
ag_news, amazon_polarity, dbpedia_14, emo, emotion, glue-sst2, imdb, tweet_eval-emoji, tweet_eval-offensive, tweet_eval-sentiment, yahoo_answers_topics, yelp_polarity, yelp_review_full

Setting: HR→LR Instructions Meta-train
ag_news, amazon_polarity, anli, art, circa, cosmos_qa, dbpedia_14, discovery, emo, emotion, freebase_qa, gigaword, google_wellformed_query, hellaswag, imdb, liar, paws, piqa, quail, quoref, ropes,
sciq, scitail, social_i_qa, swag, tab_fact, wiki_qa, wiqa, xsum, yahoo_answers_topics, yelp_polarity, yelp_review_full

Setting: HR→LR Instructions Target
ai2_arc, climate_fever, codah, commonsense_qa, dream, financial_phrasebank, medical_questions_pairs, openbookqa, poem_sentiment, qasc, quarel, sick

Table A.1: Full datasets for all settings used in MetaICL (Section 2.3). The first 10 rows are for main settings
described in Section 2.3.2; the last four rows are settings used for ablations in Section 2.3.4. Splits and
dataname names consistent to those in Ye et al. [2021] and Khashabi et al. [2020]. Bold indicates the test
dataset with no overlap in domain with meta-training tasks. A prefix unifiedqa: indicates that the dataset
taken is from UNIFIEDQA; otherwise, from CROSSFIT. References for all datasets are provided in Table A.2.
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ade_corpus_v2-classification [Gurulingappa et al., 2012], ade_corpus_v2-dosage [Gurulingappa et al., 2012], ag_news Gulli
(link), ai2_arc [Clark et al., 2018], amazon_polarity [McAuley and Leskovec, 2013a], anli [Nie et al., 2020], art [Bha-
gavatula et al., 2020], biomrc [Pappas et al., 2020a], blimp-anaphor_number_agreement [Warstadt et al., 2020], blimp-
ellipsis_n_bar_2 [Warstadt et al., 2020], blimp-sentential_negation_npi_licensor_present [Warstadt et al., 2020], blimp-
sentential_negation_npi_scope [Warstadt et al., 2020], boolq [Clark et al., 2019], circa [Louis et al., 2020], climate_fever [Diggel-
mann et al., 2020], codah [Chen et al., 2019], commonsense_qa [Talmor et al., 2019], cosmos_qa [Huang et al., 2019],
crows_pairs [Nangia et al., 2020], dbpedia_14 [Lehmann et al., 2015], discovery [Sileo et al., 2019], dream [Sun
et al., 2019], emo [Chatterjee et al., 2019], emotion [Saravia et al., 2018], ethos-directed_vs_generalized [Mollas et al.,
2020], ethos-disability [Mollas et al., 2020], ethos-gender [Mollas et al., 2020], ethos-national_origin [Mollas et al.,
2020], ethos-race [Mollas et al., 2020], ethos-religion [Mollas et al., 2020], ethos-sexual_orientation [Mollas et al.,
2020], financial_phrasebank [Malo et al., 2014], freebase_qa [Jiang et al., 2019], gigaword [Napoles et al., 2012], glue-
cola [Warstadt et al., 2019], glue-mnli [Williams et al., 2018], glue-mrpc [Dolan and Brockett, 2005], glue-qnli [Ra-
jpurkar et al., 2016b], glue-qqp (data.quora.com/First-Quora-Dataset-Release-Question-Pairs), glue-
rte [Dagan et al., 2005; Bar-Haim et al., 2006][Giampiccolo et al., 2007; Bentivogli et al., 2009], glue-sst2 [Socher et al., 2013a],
glue-wnli [Levesque et al., 2012], google_wellformed_query [Faruqui and Das, 2018], hate_speech18 [de Gibert et al., 2018],
hate_speech_offensive [Davidson et al., 2017], hatexplain [Mathew et al., 2020], health_fact [Kotonya and Toni, 2020],
hellaswag [Zellers et al., 2019], hotpot_qa [Yang et al., 2018b], imdb [Maas et al., 2011], kilt_ay2 [Hoffart et al., 2011],
kilt_fever [Thorne et al., 2018], kilt_hotpotqa [Yang et al., 2018b], kilt_nq [Kwiatkowski et al., 2019], kilt_trex [Elsahar
et al., 2018a], kilt_zsre [Levy et al., 2017], lama-conceptnet [Petroni et al., 2019, 2020], lama-google_re [Petroni et al., 2019,
2020], lama-squad [Petroni et al., 2019, 2020], lama-trex [Petroni et al., 2019, 2020], liar [Wang, 2017], mc_taco [Zhou
et al., 2019], medical_questions_pairs [McCreery et al., 2020], numer_sense [Lin et al., 2020], onestop_english [Vajjala and
Lučić, 2018], openbookqa [Mihaylov et al., 2018], paws [Zhang et al., 2019], piqa [Bisk et al., 2020], poem_sentiment [Sheng
and Uthus, 2020], proto_qa [Boratko et al., 2020], qa_srl [He et al., 2015], qasc [Khot et al., 2020], quail [Rogers et al.,
2020], quarel [Tafjord et al., 2019a], quartz-no_knowledge [Tafjord et al., 2019b], quartz-with_knowledge [Tafjord et al.,
2019b], quoref [Dasigi et al., 2019], race-high [Lai et al., 2017], race-middle [Lai et al., 2017], ropes [Lin et al., 2019],
rotten_tomatoes [Pang and Lee, 2005], sciq [Welbl et al., 2017], scitail [Khot et al., 2018], search_qa [Dunn et al., 2017],
sick [Marelli et al., 2014], sms_spam [Almeida et al., 2011], social_i_qa [Sap et al., 2019], spider [Yu et al., 2018], squad-
no_context [Rajpurkar et al., 2016b], squad-with_context [Rajpurkar et al., 2016b], superglue-cb [de Marneffe et al., 2019],
superglue-copa [Gordon et al., 2012], superglue-multirc [Khashabi et al., 2018], superglue-record [Zhang et al., 2018], superglue-
rte [Dagan et al., 2005; Bar-Haim et al., 2006][Giampiccolo et al., 2007; Bentivogli et al., 2009], superglue-wic [Pilehvar and
Camacho-Collados, 2019], superglue-wsc [Levesque et al., 2012], swag [Zellers et al., 2018], tab_fact [Chen et al., 2020], trec [Li
and Roth, 2002; Hovy et al., 2001], trec-finegrained [Li and Roth, 2002; Hovy et al., 2001], tweet_eval-emoji [Barbieri et al.,
2020], tweet_eval-emotion [Barbieri et al., 2020], tweet_eval-hate [Barbieri et al., 2020], tweet_eval-irony [Barbieri et al., 2020],
tweet_eval-offensive [Barbieri et al., 2020], tweet_eval-sentiment [Barbieri et al., 2020], tweet_eval-stance_abortion [Barbieri
et al., 2020], tweet_eval-stance_atheism [Barbieri et al., 2020], tweet_eval-stance_climate [Barbieri et al., 2020], tweet_eval-
stance_feminist [Barbieri et al., 2020], tweet_eval-stance_hillary [Barbieri et al., 2020], tweet_qa [Xiong et al., 2019], uni-
fiedqa:ai2_science_middle (data.allenai.org/ai2-science-questions), unifiedqa:boolq [Clark et al., 2019], uni-
fiedqa:commonsenseqa [Talmor et al., 2019], unifiedqa:drop [Dua et al., 2019], unifiedqa:mctest [Richardson et al., 2013],
unifiedqa:narrativeqa [Kociský et al., 2018], unifiedqa:natural_questions [Kwiatkowski et al., 2019], unifiedqa:newsqa [Trischler
et al., 2017], unifiedqa:openbookqa [Mihaylov et al., 2018], unifiedqa:physical_iqa [Bisk et al., 2020], unifiedqa:qasc [Khot
et al., 2020], unifiedqa:quoref [Dasigi et al., 2019], unifiedqa:race_string [Lai et al., 2017], unifiedqa:ropes [Lin et al., 2019],
unifiedqa:social_iqa [Sap et al., 2019], unifiedqa:squad1_1 [Rajpurkar et al., 2016b], unifiedqa:squad2 [Rajpurkar et al., 2018],
unifiedqa:winogrande_xl [Sakaguchi et al., 2020], web_questions [Berant et al., 2013], wiki_qa [Yang et al., 2015], wik-
isql [Zhong et al., 2017], wino_grande [Sakaguchi et al., 2020], wiqa [Tandon et al., 2019], xsum [Narayan et al., 2018],
yahoo_answers_topics (link), yelp_polarity [Zhang et al., 2015], yelp_review_full [Zhang et al., 2015]

Table A.2: References for 142 datasets used in MetaICL (Section 2.3). See Table A.1 to find datasets
corresponding to each setting used in the experiments. A prefix unifiedqa: indicates that the dataset
taken is from UNIFIEDQA; otherwise, from CROSSFIT.

Task breakdown of the results. Figure A.1 shows performance gap between using gold labels and using

random labels per dataset. We find that the trend that the gap is smaller than previously thought is consistant

across most datasets. Nonetheless, there are a few outlier datasets where performance gap is non-negligible,
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such as financial_phrasebank and a few hate speech detection datasets. Future work may investigate on which

tasks the model makes more use of the correctly paired training data.
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Figure A.1: Performance gap from using the demonstrations with gold labels to using the demonstrations
with random labels. Datasets are sorted in descending order. The top two figures use random labels that are
sampled at uniform, with Channel MetaICL and Channel GPT-J, respectively. The bottom two figures use
random labels that are sampled from a true distribution of labels on the training data, with Channel MetaICL
and Channel GPT-J, respectively.
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Dataset Type Example

MRPC
Minimal

sentence 1: Cisco pared spending to compensate for sluggish sales . [SEP] sentence 2: In
response to sluggish sales , Cisco pared spending . \n {equivalent|not_equivalent}

Manual
Cisco pared spending to compensate for sluggish sales . \n The question is: In response to
sluggish sales , Cisco pared spending . True or False? \n The answer is:{True|False}

RTE
Minimal

sentence 1: The girl was found in Drummondville. [SEP] sentence 2: Drummondville
contains the girl. \n {entailment|not_entailment}

Manual
The girl was found in Drummondville. \n The question is: Drummondville contains the
girl. True or False? \n The answer is:{True|False}

Tweet_eval-hate
Minimal The Truth about #Immigration \n {hate|non-hate}

Manual Tweet: The Truth about #Immigration \n Sentiment: {against|favor}

SICK
Minimal

sentence 1: A man is screaming. [SEP] sentence 2: A man is scared. \n
{contradiction|entailment|neutral}

Manual
A man is screaming. \n The question is: A man is scared. True or False? \n The answer is:
{False|True|Not sure}

poem-sentiment
Minimal willis sneered: \n {negative|no_impact|positive}

Manual willis sneered: \n The sentiment is: {negative|no_impact|positive}

OpenbookQA
Minimal What creates a valley? \n {feet|rock|water|sand}

Manual The question is: What creates a valley? \n The answer is: {feet|rock|water|sand}

CommonsenseQA
Minimal What blocks sunshine? \n {summer|park|desktop|sea|moon}

Manual The question is: What blocks sunshine? \n The answer is: {summer|park|desktop|sea|moon}

COPA
Minimal Effect: I coughed. \n {Cause: I inhaled smoke.|Cause: I lowered my voice.}

Manual I coughed because {I inhaled smoke.|I lowered my voice.}

ARC
Minimal Which biome has the most vegetation? \n {desert|forest|grassland|tundra}

Manual
The question is: Which biome has the most vegetation? \n The answer is: {desert|forest|
grassland|tundra}

Table A.3: A list of minimal templates taken from Ye et al. [2021]; Min et al. [2022b] and manual templates
taken from Holtzman et al. [2021]; Zhao et al. [2021]. See Figure 2.6 for discussion in empirical results. The
input and the label are in the red text and in the blue text, respectively. Note that | is used to separate different
options for the labels.
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Demos
w/ gold labels

(Format ✓ Input distribution ✓ Label space ✓ Input-label mapping ✓)
Circulation revenue has increased by 5% in Finland and 4% in Sweden in 2008. \n positive
Panostaja did not disclose the purchase price. \n neutral

Demos
w/ random labels

(Format ✓ Input distribution ✓ Label space ✓ Input-label mapping ✗)
Circulation revenue has increased by 5% in Finland and 4% in Sweden in 2008. \n neutral
Panostaja did not disclose the purchase price. \n negative

OOD Demos
w/ random labels

(Format ✓ Input distribution ✗ Label space ✓ Input-label mapping ✗)
Colour-printed lithograph. Very good condition. Image size: 15 x 23 1/2 inches. \n neutral
Many accompanying marketing claims of cannabis products are often well-meaning. \n negative

Demos
w/ random English words

(Format ✓ Input distribution ✓ Label space ✗ Input-label mapping ✗)
Circulation revenue has increased by 5% in Finland and 4% in Sweden in 2008. \n unanimity
Panostaja did not disclose the purchase price. \n wave

Demos
w/o labels

(Format ✗ Input distribution ✓ Label space ✗ Input-label mapping ✗)
Circulation revenue has increased by 5% in Finland and 4% in Sweden in 2008.
Panostaja did not disclose the purchase price.

Demos
labels only

(Format ✗ Input distribution ✗ Label space ✓ Input-label mapping ✗)
positive
neutral

Table A.4: Example demonstrations when using methods in Section 2.4.3. The financial_phrasebank dataset
with C = {“positive”, “neutral”, “negative”} is used. Red text indicates the text is sampled from an external
corpus; blue text indicates the labels are randomly sampled from the label set; purple text indicates a random
English word.
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Chapter B

Appendix: Nonparametric Language Models

B.1 Details on NPM (Section 3.3)

B.1.1 Model Details

Approximation at inference

Given qstart and qend, we take the top k tokens with the highest similarity scores with each of them, and

compute scores over spans composed by these tokens. Let c∗i:j be a span in C from the i-th token to the j-th

token, and E(c) ∈ Rh be a vector corresponding to a token c ∈ C. We find the top k tokens for the start and

the end:

cs1 , cs2 , · · · , csk = argTopk
c∈C

sim(qstart,E(c)),

ce1 , ce2 , · · · , cek = argTopk
c∈C

sim(qend,E(c))

using a fast nearest neighbor search. We then define a set of candidate phrases C̃∗ as: k⋃
i=1

lmax⋃
j=1

c∗si:si+j−1

 ∪

 k⋃
i=1

lmax⋃
j=1

c∗ei−j+1:ei

 ,

and predict:

argmax
v∗∈V∗

∑
c∗∈C̃∗

I[v∗ = c∗]expsim(q,E(c∗)),

where E(c∗) ∈ R2h is a vector corresponding to c∗, and V∗ is a set of any possible n-grams defined by the

vocabulary V .
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Training Details

All implementation was done with PyTorch [Paszke et al., 2019], PyTorch Lightning1 and Huggingface

Transformers [Wolf et al., 2020].

Masking. We use a masking ratio of 15% for all models, following the standard in prior work [Devlin et al.,

2019; Liu et al., 2019; Joshi et al., 2020]. We implement masking as follows: (1) we first identify all possible

candidate spans (spans that positives are found from other sequences in the batch), (2) sample the length of

spans to mask from a geometric distribution with a hyperparameter p = 0.5, and (3) mask the spans with

respect to the sampled length until the masking budget has been spent. We do not mask more than 128 spans

from one sequence, and do not mask the span if the same span has been masked for more than ten times

within the batch in order to prevent repeatedly masking overly frequent spans.

For [MASKs] and [MASKe], we use the [MASK] vocab from the RoBERTa tokenizer. Note that it is not

necessary to use different tokens for [MASKs] and [MASKe] since the Transformer can handle positional

information.

A special case: NPM SINGLE

Along with NPM, we introduce NPM SINGLE, which outputs a nonparametric distribution over every single

token in C, instead of a phrase. To some extent, NPM is a strict generalization of NPM SINGLE, and NPM

SINGLE still has a problem that existing encoder-only models have, e.g., can only fill in the [MASK] with a

single token. We however think NPM SINGLE can be useful for some applications, e.g., for fine-tuning, as

existing encoder-only models are used for.

Inference. Given a reference corpus C = {c1, · · · , cN}, we construct N number of h-dimensional vectors

c1, · · · , cN ∈ Rh by feeding the text into the encoder. At inference time, given a query whose t-th token is

[MASK], we feed it into the encoder:

q1..qL = Encoder(q1..qt−1,[MASK], qt+1..qL).

We take qt as a vector that represents the [MASK] token in the query. Finally, the prediction is made by

aggregating the similarity scores to the tokens in C:

argmax
v∈V

∑
c∈C

I[c = v]exp(sim(qt,E(c))),

where E(c) ∈ Rh is a vector corresponding to c, and V is the vocabulary set.

1https://github.com/Lightning-AI/lightning
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In practice, since computing scores over all tokens in C is infeasible, an approximation is made by

computing scores for the top k nearest neighbors only, and treating other tokens to have a similarity score of

−Inf . More precisely:

c1, c2, · · · , ck = argTopk
c∈C

sim(qt,E(c))

are obtained by using an index (e.g., FAISS [Johnson et al., 2019]), and the following is returned as a

prediction:

argmax
v∈V

∑
1≤i≤k

I[ci = v]exp(sim(qt,E(c
i))).

Training. Let xi1...x
i
L be the i-th sequence in the batch, whose subset is replaced with [MASK] and

converted to x̂i1...x̂
i
L. Both the unmasked sequence and the masked sequence are fed into the encoder, and

each token is mapped into an h-dimensional vector:

xi
1 · · ·xi

L = Encoder(xi1 · · ·xiL),

x̂i
1 · · · x̂i

L = Encoder(x̂i1 · · · x̂iL).

The training objective is then defined as:

L∑
t=1

I[x̂t = [MASK]]l(xit, x̂
i
t),

where l(xit, x̂
i
t) is

−log

∑
y∈Y+(xi

t)
exp(sim(x̂i

t,y))∑
y∈Y+(xi

t)∪Y−(xi
t)
exp(sim(x̂i

t,y))
.

Here, sim(·, ·) is a similarity function defined in Section 3.3.2, and Y+(xit) and Y−(xit) are positives and

negatives of xit—tokens from other sequences in the batch that share and do not the vocab, respectively.

Y+(xit) =
{
xjm|xit = xjm and i ̸= j

}
,

Y−(xit) =
{
xjm|xit ̸= xjm and i ̸= j

}
.

B.1.2 Inference on closed-set tasks

When applying NPM and NPM SINGLE on closed-setk tasks, we closely follow Shi et al. [2022] who adapts

kNN-LM for zero-shot inference on classification tasks. We assume a fuzzy verbalizer: f : Y → Ṽ , where Y
is a set of labels in the task and Ṽ ∈ V is a subset of the vocabulary V . The fuzzy verbalizer maps a label to a
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Dataset |D| |Ds| # labels Example

Closed-set tasks

AGN 120,000 3,000 4 Indiana defends its NCAA mens’s soccer title by edging UC Santa Barbara in penalty kicks.
The text topic is about [MASK]. ([MASK]={politics, sports, business, technology})

Yahoo 60,000 3,000 10
Company for cemecal at espaniea? Answer: Can you give us more info? The text topic is
about [MASK]. ([MASK]={society, science, health, education, computer, sports, business,
entertainment, family, politics})

Subj 2,000 2,000 2 He tells mitchell that he is now in debt. This is a [MASK].
([MASK]={review, summary})

SST-2 2,210 2,210 2 It was [MASK]. ([MASK]={great, terrible})

MR 2,000 2,000 2 Simplistic, silly and tedious. It was [MASK]. ([MASK]={great, terrible})

RT 1,066 1,066 2 weird. rewarding. It was [MASK]. ([MASK]={great, terrible})

CR 2,000 2,000 2 I am very pleased so far. It was [MASK]. ([MASK]={great, terrible})

Amz 400,000 3,000 2 It was [MASK]. ([MASK]={great, terrible})

RTE 277 277 2 Most commercial logwood is grown in Honduras, right? [MASK], plants are grown in water
or in substance other than soil. ([MASK]={Yes, No})

Open-set tasks
LAMA T-REx 34,039 2,983 - AVCDH is owned by [MASK].
LAMA Google RE 5,200 1,856 - Joshua Mathiot died in [MASK].
KAMEL 46,800 3,000 - What is followed by So-Lo? Answer: [MASK].
NQ 3,610 3,000 - who sang i ran all the way home? The answer is: [MASK].
TQA 11,313 3,000 - Who wrote the opera Carmen? The answer is: [MASK].
TempLAMA22

19
- changed 3,360 3,000 - Contributor Covenant is developed by [MASK].
- unchanged 3,360 3,000 - Atari 8-bit family is developed by [MASK].

Entity translation 10,452 6,622 - The Korean translation of Banpo Bridge is: [MASK].

Table B.1: Statistics of downstream datasets. |D| and |Ds| indicate the number of test examples on the
original data and the subsampled data, respectively. See Appendix B.1.3 for details.

set of tokens that express the label, e.g., in a sentiment classification task, f(Positive) includes awesome

or great, and f(Negative) includes terrible or broken.

NPM SINGLE is given a query vector q ∈ Rh and predicts:

argmax
y∈Y

∑
c∈C

I[c ∈ f(y)]exp

(
sim(q,E(c))

τ

)
,

where E(c) ∈ Rh is a vector corresponding to c, and τ is a hyperparameter.

NPM is given a query vector q ∈ R2h and predicts:

argmax
y∈Y

∑
c∗∈C∗

I[c∗ ∈ f(y)]exp

(
sim(q,E(c∗))

τ

)
,

where E(c∗) ∈ R2h is a vector corresponding to c∗. Note that this is essentially equivalent to

argmax
y∈Y

∑
c∈C

I[c ∈ f(y)]exp

(
sim(qstart,E(c))

τ
+

sim(qend,E(c))

τ

)
.
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Corpus name Source |C| Datasets used

En-Wiki+CCNews Subset of En-Wiki 08/01/2019 and CCNews 126M AGN, Yahoo, RTE
Subjectivity corpus Raw IMDB 15M Subj
Review corpus Amazon and IMDB 62M SST-2, MR, RT, CR, Amz
En-Wiki 2019 En-Wiki 08/01/2019 810M All open-set tasks
En-Wiki 2022 En-Wiki 08/01/2022 858M TempLAMA22

19

Table B.2: Statistics of the retrieval corpus. |C| indicates the number of tokens in the corpus.

We use τ = 5.0 for both NPM SINGLE and NPM.

B.1.3 Evaluation Details

Table B.1 reports statistics and templates on each downstream task, and Table B.2 reports statistics of the

retrieval corpus used in experiments.

For closed-set tasks, we use templates and verbalizers provided by Shi et al. [2022] for most datasets,

except two datasets. For RTE, we use the template from Artetxe et al. [2022]. For Subj, we write our own

template, motivated by Zhong et al. [2022a] that found Subj is mainly about differentiating a review and a

summary. For open-set tasks, we use templates provided by the original authors, except NQ and TQA for

which we use the templates from GPT-3 [Brown et al., 2020a]. Due to limited computation resource, we

subsample the data to include up to 3,000 examples, following the standard from prior work [Zhao et al., 2021;

Shi et al., 2022]. For closed-set tasks, we use exactly the same set of data as Shi et al. [2022], and for open-set

tasks, we use the same script to subsample the data. For LAMA T-REx and Google RE, we subsample up to

1,000 examples for each of 1, 2, 3 and 4+ grams. For the entity translation task, we subsample up to 1,000

examples per language.

The following is a more detailed description of open-set tasks used in Section 3.3.5.

LAMA [Petroni et al., 2019] is a factual probing benchmark that is designed to quantify the amount

of factual knowledge in the model. It requires the model to predict the object given a subject-relation tuple

in a cloze format. We use two versions of LAMA [Petroni et al., 2019]: (1) LAMA T-REx, derived from

Elsahar et al. [2018b] and (2) LAMA Google-RE, derived from the Google-RE corpus.2 For each version,

we additionally consider the UHN (UnHelpfulNames) subset [Poerner et al., 2019]) where instances whose

subject strongly hints the object by names (e.g., Apple Watch and Apple) are excluded. We also consider

the hard subset of T-Rex from Zhong et al. [2021b].

Note that Petroni et al. [2019] only include triples whose object is one token based on BERT [Devlin

et al., 2019]; however, with a different pretrained model like RoBERTa, entities could be multiple BPE tokens.

Entities that are splitted into multiple BPE tokens are more rare entities.

2https://code.google.com/archive/p/relation-extraction-corpus

143

https://code.google.com/archive/p/relation-extraction-corpus


ISO Code Language |D| |Ds|

zh Chinese 3,199 1,000
ar Arabic 2,013 1,000
el Greek 1,618 1,000
iw Hebrew 841 841
ru Russian 758 758
jp Japanese 471 471
hi Hindi 427 427
ko Korean 418 418
pl Polish 177 177
tr Turkish 150 150
cs Czech 109 109
ta Tamil 80 80
th Thai 74 74
mn Mongolian 64 64
ml Malayalam 53 53

TOTAL 10,452 6,622

Table B.3: Statistics of the entity translation benchmark. Languages are sorted based on their availabilities.

KAMEL [Kalo and Fichtel, 2022] is another factual probing task as LAMA but with a few key differences

to make it more general and broad: (1) it includes a broader coverage of triples, (2) it removes the constraint

that the object is one token based on BERT, (3) it includes objects with literal values, and (4) it has a question

answering format.

Natural Questions (NQ, Kwiatkowski et al. [2019]) and TriviaQA (TQA, Joshi et al. [2017]) are two

welll-studied open-domain question answering datasets. We use the open-version of NQ [Lee et al., 2019]

and TQA where the question is the only input and the model should use its knowledge to answer the question.

TempLAMA22
19 is a task that requires probing knowledge with temporal updates. The task is first introduced

by Dhingra et al. [2022] and Jang et al. [2022a]; however, we could not use either of existing data as their

time split do not match our training. We therefore create the data by using a script provided by Dhingra et al.

[2022] but using the 2019 and the 2022 dumps. We take Wikipedia triples whose relations are available for

a template from either Petroni et al. [2019] or Dhingra et al. [2022]. We then include triples whose object

entities differ between the 2019 dump and the 2022 dump (due to the entity being updated), or only appear

in the 2022 dump (due to the subject or the relation being added) to the changed set. Otherwise, triples

are included in the unchanged set. We additionally find that many triples are overly difficult because the

fact is extremely niche and not really known. We thus filter the data to only include facts that appear in

Wikipedia. Specifically, we include triples if the subject has a corresponding Wikipedia page and the object

entity appears in that Wikipedia page.
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Model #Params C T-REx Google RE
KML TQA NQ

All UHN Hard All UHN

Baselines (encoder-decoder)
T5 2.2x 13.3 5.5 10.7 1.1 0.4 1.6 4.2 0.5
T5 3B 8.5x 12.1 8.2 11.5 2.1 0.7 3.6 9.0 2.0

BM25 + T5 2.2x ✓ 22.2 20.3 22.4 16.4 16.6 13.9 31.4 5.2
BM25 + T5 3B 8.5x ✓ 21.6 19.0 21.8 18.5 15.5 16.2 39.6 10.8

Baselines (decoder-only)
OPT 2.7B 7.6x 9.8 6.7 8.3 0.0 0.0 1.6 9.9 2.1
GPT-3 2.7B 7.6x 4.4 2.6 3.8 0.0 0.0 2.1 5.2 1.1
OPT 6.7B 19x 11.6 9.9 10.7 0.6 0.3 3.2 20.9 4.2
GPT-3 6.7B 19x 8.1 5.0 6.7 0.0 0.0 2.1 12.4 3.1
OPT 13B 37x 15.0 12.7 12.7 0.3 0.3 2.5 22.5 4.2
GPT-3 13B 37x 16.4 13.7 15.5 0.8 0.4 2.2 25.5 5.2
GPT-3 175B 500x 25.7 24.1 24.7 1.1 1.0 6.5 49.0 11.4

BM25 + OPT 2.7B 7.6x ✓ 14.8 14.1 13.8 4.4 3.7 11.3 28.5 8.3
BM25 + GPT-3 2.7B 7.6x ✓ 3.5 3.4 3.6 0.1 0.1 5.2 14.5 6.1
BM25 + OPT 6.7B 19x ✓ 14.8 14.3 14.9 4.1 3.3 8.2 29.9 10.7
BM25 + GPT-3 6.7B 19x ✓ 14.9 15.3 15.1 4.4 3.5 7.0 21.1 8.8
BM25 + OPT 13B 37x ✓ 18.9 19.1 19.3 3.8 3.1 10.6 34.0 10.7
BM25 + GPT-3 13B 37x ✓ 22.2 22.7 22.4 11.8 11.2 8.9 32.4 11.2
BM25 + GPT-3 175B 500x ✓ 32.0 31.6 31.3 11.4 11.9 12.2 44.9 6.4

Ours (encoder-only, nonparametric)
NPM 1.0x ✓ 34.5 29.0 32.1 27.9 23.0 15.6 32.2 10.8

Table B.4: Results on open-set tasks (raw numbers in Figure 3.7). # Params indicates the relative number
of model parameters compared to RoBERTa large (354M), and C indicates whether a text corpus is used.
For LAMA (T-REx and Google RE), the macro-averaged EM over 1, 2, 3 and 4+ grams are reported. All
models are zero-shot. NPM significantly outperforms larger parameters models, either with and without a
retrieval-and-generate approach that uses BM25.

Entity translation requires translating an entity from English to other languages that are not Latin based.

While this is mainly to evaluate if the model can generate rare or unseen characters that are not in En-

glish, the entity translation task itself is a vital and challenging task in real applications such as machine

translation [Babych and Hartley, 2003; Yan et al., 2018] and cross-lingual question answering [Clark et al.,

2020a; Asai et al., 2021a]. It is often beyond a series of simple translations of each word, or spelling out its

pronunciation [Moore, 2003; Hassan et al., 2007; Sun et al., 2017]. For instance, the Korean translation of

Banpo Bridge in Figure 3.3 (반포대교) is not the concatenation of the translations of Banpo and Bridge (반

포다리).

We first identify a list of 15 non-Latin languages: Arabic (ar), Czech (cs), Greek (el), Hindi (hi),

Hebrew (iw), Japanese (jp), Korean (ko), Malayalam (ml), Mongolian (mn), Polish (pl), Russian (ru), Tamil

(ta), Thai (th), Turkish (tr), and Chinese (zh). We then implement heuristics to identify entities and their

translations from English Wikipedia. Specifically, we parse the first paragraph of each Wikipedia article
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Model #Params AGN SST-2

0-shot 4-shot 0-shot 4-shot

Baselines (Parametric)
RoBERTa x1.0 71.3 - 84.5 -
GPT-3 2.7B [Zhao et al., 2021] x7.6 44.7 43.3 57.2 59.1

+ CC [Zhao et al., 2021] x7.6 63.2 71.1 71.4 79.9
GPT-3 2.7B [Holtzman et al., 2021] x7.6 69.0 - 53.8 88.1

+ PMI [Holtzman et al., 2021] x7.6 67.9 - 72.3 87.7
GPT-3 6.7B [Holtzman et al., 2021] x19 64.2 - 54.5 92.9

+ PMI [Holtzman et al., 2021] x19 57.4 - 80.0 79.8
GPT-3 13B [Holtzman et al., 2021] x37 69.8 - 69.0 85.4

+ PMI [Holtzman et al., 2021] x37 70.3 - 81.0 86.9
GPT-3 175B [Zhao et al., 2021] x500 43.9 61.0 71.6 93.6

+ CC [Zhao et al., 2021] x500 73.9 85.9 75.8 94.3
GPT-3 175B [Holtzman et al., 2021] x500 75.4 - 63.6 89.9

+ PMI [Holtzman et al., 2021] x500 74.7 - 71.4 95.5

Ours (Nonparametric)
NPM SINGLE x1.0 74.2 - 86.8 -
NPM x1.0 74.5 - 87.2 -

Table B.5: Comparison to GPT-3 on AG News and SST-2. # Params indicates the relative number of model
parameters compared to RoBERTa large (354M). All GPT-3 numbers are taken from previous work. k-shot
indicates that the model performs in-context learning with k labeled examples with no gradient updates. We
report on SST-2 and AGN, because they are all datasets shared between our paper and previous papers that
report GPT-3 results [Zhao et al., 2021; Holtzman et al., 2021]. Our zero-shot models outperform 500x larger
zero-shot GPT-3 and 7.6x larger 4-shot GPT-3, but lag behind 4-shot GPT-3 that is 19x or larger.

and pair the found translation with a topic entity of the article. For instance, a Korean translation of Banpo

Bridge is found from the first sentence of https://en.wikipedia.org/wiki/Banpo_Bridge.

Per-language statistics are reported in Table B.3.

B.1.4 Additional Results

Full results on knowledge tasks. Table B.4 reports full results on five knowledge tasks. See Figure 3.7 for

an illustration, and Section 3.3.5 for discussion.

Comparison to few-shot GPT-3. Table B.5 compares zero-shot NPM SINGLE and NPM with zero- and

four-shot GPT-3. Our zero-shot models outperform 500x larger zero-shot GPT-3 and 7.6x larger 4-shot

GPT-3, but lag behind 4-shot GPT-3 that is 19x or larger. We think future work can explore extending our

models to a few-shot setup.

Entity translation given an oracle passage. We evaluate models on the entity translation task where an

oracle passage—a passage that is guaranteed to contain the translation information—is provided to the model.

Baselines prepend oracle passages to the input, as it does with the retrieve-and-generate approach. NPM uses

oracle passages to restrict the search space.
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Model #Params #L ar cs el hi iw jp ko ml mn pl ru ta th tr zh AVG

Baselines, English-only
T5 2.2x 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.0 1.1 0.9 0.0 0.0 0.0 0.0 0.2
T5 3B 8.5x 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.6 1.3 0.0 0.0 0.0 0.0 0.5
OPT 6.7B 19x 0.0 0.0 0.3 0.0 0.0 0.0 3.1 0.0 0.0 0.0 2.9 0.0 0.0 0.0 0.0 0.4
OPT 13B 37x 1.5 0.0 1.2 0.7 0.0 0.0 1.4 0.0 0.0 1.1 7.4 0.0 0.0 1.3 0.1 1.0

BM25 + T5 2.2x 0.0 5.5 0.3 0.2 0.5 0.0 0.2 1.9 0.0 6.8 0.8 1.2 0.0 11.3 0.0 1.9
BM25 + T5 3B 8.5x 0.0 12.8 0.1 0.7 0.2 0.8 0.0 0.0 1.6 28.8 1.7 0.0 0.0 20.0 0.0 4.4
BM25 + OPT 6.7B 19x 26.4 54.1 15.5 11.2 11.8 14.4 19.6 5.7 3.1 47.5 52.5 6.2 12.2 32.0 22.7 22.3
BM25 + OPT 13B 37x 17.3 51.4 24.9 15.5 27.8 12.3 22.0 11.3 7.8 45.8 48.2 8.8 18.9 34.0 23.3 24.6

Ours, English-only
NPM 1.0x 51.9 33.0 60.9 63.2 63.7 59.0 60.5 50.9 46.9 33.3 61.2 51.2 60.8 32.7 56.9 52.4

References, Multilingual
mT5 3.4x 101 0.3 1.8 1.5 0.0 0.4 1.9 0.7 0.0 0.0 1.1 4.6 2.5 1.4 3.3 0.7 1.3
mT5 XL 11x 101 4.4 3.7 4.9 6.8 0.7 2.3 4.1 1.9 4.7 5.6 8.0 5.0 0.0 6.7 2.8 4.1
BLOOM 3B 8.5x 46 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0
BLOOM 7.1B 20x 46 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.1

BM25 + mT5 3.4x 101 12.4 22.9 21.6 9.8 12.5 28.9 19.1 11.3 18.8 15.8 16.0 17.5 28.4 16.7 33.4 19.0
BM25 + mT5 XL 11x 101 64.4 64.2 54.3 65.6 62.7 55.4 69.4 43.4 62.5 52.0 53.7 37.5 50.0 48.7 65.0 56.6
BM25 + BLOOM 3B 8.5x 46 24.2 25.7 1.7 13.3 15.1 18.5 17.9 5.7 6.2 21.5 11.1 10.0 27.0 18.0 44.5 17.4
BM25 + BLOOM 7.1B 20x 46 19.0 49.5 11.4 20.8 8.1 30.1 25.4 5.7 6.2 54.2 29.0 6.2 37.8 33.3 53.7 26.0

Table B.6: Results on the entity translation task. #L indicates the number of languages multilingual models
are trained on. Bold and Bold indicate the best among monolingual models and the best including multilingual
models, respectively. NPM significantly outperforms all existing monolingual models, and approaches or
outperforms larger multilingual models.

Model #Params #L ar cs el hi iw jp ko ml mn pl ru ta th tr zh AVG

Baselines, English-only
T5 2.2x 0.0 13.8 0.7 0.9 0.6 1.1 0.5 3.8 1.6 15.8 1.3 7.5 0.0 16.7 0.4 4.0
T5 3B 8.5x 0.2 21.1 1.0 0.7 0.7 2.3 1.2 3.8 4.7 37.3 2.9 8.8 1.4 30.7 0.4 7.3
OPT 6.7B 19x 24.4 56.9 22.9 15.5 19.7 19.1 32.5 24.5 3.1 56.5 60.9 22.5 23.0 46.0 30.2 30.5
OPT 13B 37x 20.7 62.4 22.7 15.7 30.9 17.6 36.1 18.9 15.6 56.5 52.2 22.5 35.1 48.7 40.0 33.0

Ours, English-only
NPM 1.0x 70.3 44.0 76.8 74.0 82.4 71.3 73.2 58.5 59.4 45.2 71.5 68.8 66.2 45.3 74.5 65.4

References, Multilingual
mT5 3.4x 101 19.4 25.7 30.8 19.0 20.6 33.8 28.2 28.3 40.6 18.6 23.1 30.0 29.7 26.7 37.4 27.5
mT5 XL 11x 101 83.2 76.1 69.6 81.5 77.4 68.2 85.2 49.1 67.2 65.5 62.7 51.2 68.9 64.0 79.0 69.9
BLOOM 3B 8.5x 46 51.2 27.5 3.1 30.2 34.1 34.0 30.9 11.3 7.8 28.2 23.0 17.5 37.8 22.0 70.1 28.6
BLOOM 7.1B 20x 46 29.6 43.1 12.0 27.6 12.2 32.5 30.9 9.4 15.6 59.3 38.1 13.8 43.2 32.0 65.5 31.0

Table B.7: Results on the entity translation task given an oracle passage. #L indicates the number of languages
multilingual models are trained on. Bold and Bold indicate the best excluding multilingual models and the
best including multilingual models, respectively.

Table B.7 reports results. While performance overall increases compared to when the oracle passage is

not provided, the overall comparison between models does not change from Table B.6: (1) all monolingual

models significantly suffer, except for a couple of languages that are derived from Latin; (2) NPM significantly

outperforms all monolingual models; (3) NPM even outperforms 3.4x larger mT5 and 20x larger BLOOM,

and approaches 11x larger mT5.
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Chapter C

Appendix: Responsible Language Models

C.1 Details for Section 4.4

Details on the parametric component SILO. Table C.1 reports the hyperparameters for the parametric

component of SILO. We keep these hyperparameters fixed for all parametric models that we report in this

paper. We follow the model architecture of LLaMa [Touvron et al., 2023], and we use the GPT-NeoX-20B

tokenizer [Black et al., 2022], with 50432 BPE types. During training, we use 2,048 token sequences that are

packed across document boundaries, and we pre-pend a beginning-of-text token to every document. We use

weight decay of 0.1, the Adam optimizer with β2 = 0.95, 2,000 steps of warmup, with a cosine learning rate

scheduler. We train for multiple epochs in each dataset, tracking validation perplexity every 10B tokens, and

perform early stopping. We train our PD, PDSW and PDSWBY models for 60B, 250B, and 350B tokens in

total, respectively.

Model #L #H dmodel LR Batch

1.3B 24 16 2048 1e-3 2.6M

Table C.1: Basic hyperparameters for the parametric component of SILO.

Details on the nonparametric component of SILO. For kNN-LM, we use IndexIVFPQ which quantizes

vectors into 64-bytes and clusters them into 4,096 centroids, learned from 1 million sampled vectors, following

Khandelwal et al. [2020]. Instead of recomputing the exact L2 distance using the original embeddings, we use

the L2 distance beteen quantized vectors returned by the FAISS index (ablations in Appendix C.2.2). Since

their scale is not preserved, we use d(xq,yq)
τ as a proxy of d(x,y), where xq and yq are vectors quantized from

x and y. Hyperparameters, including k, λ, and τ , are chosen based on the validation data in a domain-specific

manner.
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Table C.2 reports the datastore statistics for both RIC-LM and kNN-LM, as well as hyperparameter

values for kNN-LM (λ, k, τ ). Due to the resource constraints, the datastore size is capped to up to 10% of the

PILE training data (and to 1024.0M tokens in the case of kNN-LM), but future work can investigate further

scaling the datastore.

Data
RIC-LM kNN-LM

# tokens # blocks # tokens λ k τ

Github 3084.3M 6.0M 1024.0M 0.2 128 10.0
NIH ExPorter 72.2M 0.1M 72.2M 0.3 32,768 20.0
Wikipedia 1177.9M 2.3M 1024.0M 0.3 4,096 20.0
CC News 382.2M 0.7M 382.2M 0.7 4,096 20.0
Books3 1424.7M 2.8M 1024.0M 0.2 4,096 25.0
Enron Emails 45.0M 0.1M 45.0M 0.5 4,096 1.0
Amazon 1214.3M 2.4M 1024.0M 0.5 32,768 20.0
MIMIC-III 519.5M 1.0M 519.5M 0.7 1,024 15.0

Table C.2: Datastore statistics as well as hyperparameter values for kNN-LM. Underline indicates exact
nearest neighbor search (instead of approximate) was performed for kNN-LM because the datastore is small
enough. Hyperparameters are chosen based on the validation data of each domain.

C.2 Additional Experimental Results in Section 4.5

Table C.3 reports perplexity of the parametric LMs on the validation data that is analogous to Table 4.3.

Table C.4 reports perplexity of both parametric and nonparametric LMs on the validation data that is analogous

to Table 4.4. Findings based on the validation data and on the test data are largely consistent.

C.2.1 Ablations: Parametric Component (Section 4.5.1)

Effect of upsampling low-resource data. Since OPEN LICENSE CORPUS has an extremely skewed dis-

tribution of domains, we upsample less-representative domains during training. Table C.5 (left) compares

the models trained on PDSW with and without domain upweighting. In-domain datasets that are not up-

weighted, e.g., FreeLaw, see slight degration in performance. On out-of-doain datasets, there is no significant

differences, although the model with upsampling is marginally better (19.6 vs. 19.7 when averaged over

9 out-of-domain datasets). We note that we did not tune the upweighting ratio nor explore alternative

upweighting approaches [Xie et al., 2023] due to resource constraints, and leave them for future work.

59B tokens of source code significantly help. When using SW, a substantial 59.1% of the training data is

actual source code. To determine SW provides such large gains, we also run an ablation where we include SW

data but exclude all of the actual source code, i.e., we only include Hacker News, Ubuntu IRC, Deepmind

Math, and AMPS on top of the PD data. This leaves models trained on 99.6B tokens for OLC (PDSW) and
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Eval data PD PDSW PDSWBY Pythia

FreeLaw 5.3 5.7 6.5 5.6
Gutenberg 14.6 11.9 13.4 12.7
HackerNews 36.6 12.1 13.2 12.5
Github 13.3 2.6 2.7 2.4
NIH ExPorter 28.6 19.3 15.1 11.2
PhilPapers 55.2 24.2 16.5 14.3
Wikipedia 27.9 19.7 11.1 9.0
CC News 30.8 21.3 19.3 10.9
BookCorpus2 25.2 19.2 20.2 12.8
Books3 25.9 18.7 18.1 12.4
OpenWebText2 38.1 21.2 18.8 11.5
Enron Emails 19.9 14.3 14.5 7.6
Amazon 81.9 34.7 37.0 22.8
MIMIC-III 18.2 16.4 13.6 11.5

Average 30.1 17.2 15.7 11.2

Table C.3: Perplexity on the parametric LMs trained on PD, PDSW, and PDSWBY, as well as Pythia 1.4B,
a model trained with similar amounts of compute but on non-permissive data. We use ■, ■, and ■ to
indicate text that is in-domain, out-of-domain, or out-of-domain but has relevant data in-domain data (e.g.,
non-permissive Github code versus our permissive training code). Reported on the validation data; see
Table 4.3 for results on the test data.

40.7B for OLC (PDSW) excluding source code. Table C.5 (right) report results on a subset of the validation

domains. Including source code provide significant benefits for certain test datasets, e.g., nearly a 20 point

improvement in perplexity on PhilPapers, likely because it significantly increases the size of the training data.

C.2.2 Ablations: Adding the Nonparametric Component (Section 4.5.2)

Impact of adding a nonparametric component across varying LMs. We compare parametric-only LM,

RIC-LM and kNN-LM over four different LMs: PD, PDSW and PDSWBY variants of SILO as well as Pythia.

Figure C.1 reports their results on three evaluation datasets: Wikipedia, NIH ExPorter and Enron Emails.

Findings from Section 4.5.2 hold across all models: both RIC-LM and kNN-LM are consistently better than

the parametric-only LM, and kNN-LM overall achieves the best performance. For instance, kNN-LM allows

the model to be comparable to or outperform the one-level relaxed variant, e.g., a PD-based kNN-LM is

comparable to a PDSW-based parametric LM, and PDSW-based kNN-LM is comparable to a PDSWBY-based

parametric LM.

Effect of scaling the datastore in-domain and out-of-domain. §4.5.2 shows that performance of both

kNN-LM and RIC-LM rapidly improves as the datastore size grows, and kNN-LM improves more rapidly

than RIC-LM does. This evaluation is mainly done with SILO where the test domains are out-of-domain.

Does this trend hold when the test domains are in-domain? To answer this question, we examine effect of

scaling the datastore with Pythia 1.4B, where all of our test datasets can be considered in-domain.
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Eval data
PDSW Pythia

Prm-only kNN-LM RIC-LM Prm-only

Github 2.6 2.4 2.4 2.4
NIH ExPorter 19.3 14.9 18.5 11.2
Wikipedia 19.7 14.1 18.9 9.0
CC News 21.3 7.1 14.8 10.9
Books3 18.8 17.3 18.5 12.5
Enron Emails 14.3 6.7 11.1 7.6
Amazon 34.7 26.2 33.7 22.8
MIMIC-III 16.3 7.2 14.1 11.5

Average 18.4 12.0 16.5 11.0

Table C.4: Perplexity of parametric LMs (Prm-only), kNN-LM and RIC-LM; ■ indicates in-domain;
■ indicates out-of-domain; ■ indicates out-of-domain but has relevant data in-domain. Reported on the
validaiton data; see Table 4.4 for results on the test data.

Data
PDSW

w/o upsampling
PDSW

w upsampling

FreeLaw 4.9 5.7
Github 2.4 2.6
NIH ExPorter 20.0 19.3
PhilPapers 23.9 24.2
Wikipedia 19.9 19.7
CC News 21.8 21.3
BookCorpus2 19.4 19.2
OpenWebText2 21.0 21.2
Enron Emails 13.5 14.3
Amazon 35.7 34.7

Data PD

PDSW

w/o code PDSW

FreeLaw 5.3 5.7 5.7
Github 13.3 8.2 2.6
NIH ExPorter 28.6 26.2 19.3
PhilPapers 55.2 36.4 24.2
Wikipedia 27.9 26.5 19.7
CC News 30.8 28.8 21.3
BookCorpus2 25.2 23.8 19.2
OpenWebText2 38.1 31.7 21.2
Enron Emails 19.9 18.5 14.3
Amazon 81.9 46.1 34.7

Table C.5: (Left) Effect of re-weighting rare domains, comparing models trained on OLC (PDSW) with and
without upsampling. (Right) Effect of SW data, with and without explicit source code—we train an LM with
SW data but remove all of the actual source code (i.e., we leave Hacker News, Ubuntu IRC, Deepmind Math,
and AMPS). Both tables report perplexity on the validation data.

Figure C.2 reports the results: Pythia on the left, SILO (PDSW) on the right. Results show that both Pythia

and SILO see consistent improvements from kNN-LM and RIC-LM as the datastore gets larger, although the

slope is larger with SILO than with Pythia. Again consistent to findings in §4.5.2, kNN-LM scales better than

RIC-LM does, resulting in kNN-LM outperforming RIC-LM with a reasonably large datastore in most cases

(with an exception of Pythia on Github, where RIC-LM outperforms kNN-LM with a reasonable size of a

datastore).

Ablations on variants of RIC-LM. We explore four different variants of RIC-LM. (1) The basic is the

method described in §4.4.2, which uses text blocks with a length of L each. At inference, it takes the top 1

text block from the datastore and feeds it to the LM, i.e., PLM(y|b̂, x) where x is the input and b̂ is the top

1 text block. (2) The ensbl-k (k = 10) variants is also based on text blocks with a length of L each. At
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Figure C.1: Results on different variants of models: PD, PDSW and PDSWBY variants of SILO as well as
Pythia. Adding a nonparametric component through either RIC-LM and kNN-LM helps and kNN-LM is
overall better than RIC-LM, consistently across all models and evaluation datasets.

Data
PDSW Pythia

basic ensbl-10 concat-2 concat-next basic ensbl-10 concat-2 concat-next

CC News 14.8 13.5 17.0 18.8 8.2 7.9 9.2 9.9
Enron Emails 11.1 10.0 12.8 13.4 6.3 6.117 7.1 7.3

Table C.6: Ablations on different variants of RIC-LMs. Perplexity on the validation data reported. ensbl-10
is 10x slower than other three methods.

inference, it takes the top k text blocks from the datastore, feeds each to the LM in parallel and aggregates the

probability distributions, i.e., 1
k

∑
1≤i≤k PLM(y|b̂i, x) where b̂1...b̂k are the top k text blocks. This follows

a method from Shi et al. [2024b]. (3) The concat-k (k = 2) variant uses text blocks with a length of L
k

each. At inference, it takes the top k text blocks from the datastore, concatenates them in a reverse order, and

feeds it into the LM, e.g., PLM(y|b̂k, · · · , b̂1, x) where b̂1...b̂k are the top k text blocks. (4) The concat-next
variant uses text blocks with a length of L

2 each. At inference, it takes the top 1 text block from the datastore,

concatenates the text block and the subsequent text block in a datastore, and feeds it into the LM. This is

based on the intuition that the continuation of the text block that is most similar to the query can be useful

for the continuation of the query; Borgeaud et al. [2022] has explored a similar approach based on the same

intuition. We use L = 1024 for all variants. The ensbl-k variant has run-time that is approximately k times

of run-time of the basic, concat-k and concat-next.

Results are reported in Table C.6. The concat-2 and concat-next variants perform poorly, while the

ensbl-10 outperforms the basic variant. However, we reached the conclusion that the significant run-time cost

(i.e., 20x compared to a parametric LM) does not justify the improvements, and thus, we primarily use the

basic variant for the remaining experiments. Future work may involve re-evaluating models using the ensbl-k

approach or enhancing its run-time efficiency.

Effect of different approximation methods for L2 distance. Prior work [Khandelwal et al., 2020]

typically uses approximate nearest neighbor search to find the top k nearest neighbors, and then computes
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Method PPL Disk use

Param-only 19.7 0.0

No approximation 16.4 1.0
Quantized (4x) 16.6 0.25
Quantized (8x) 16.6 0.125
Quantized (16x) 16.8 0.0625
IVFPQ approximation 16.8 0.0178

Table C.7: Ablations on approximation
methods on the validation data of Wikipedia,
using the LM trained on PDSW and the data-
store consisting of 51.2 million tokens (5%
of the datastore in the main experiments).
Relative disk memory usage reported (con-
sidering no approximation as 1.0).

Method PPL # tokens/s

Param-only 19.7 1828.6

RIC-LM (51.2M) 19.3 812.7
RIC-LM (102.4M) 19.2 731.4
RIC-LM (204.8M) 19.1 588.5
RIC-LM (409.6M) 18.9 478.5
RIC-LM (1,178M) 18.9 419.7

kNN-LM (51.2M) 16.8 184.2
kNN-LM (102.4M) 16.3 112.0
kNN-LM (204.8M) 15.7 59.3
kNN-LM (409.6M) 15.0 31.8
kNN-LM (1,024M) 14.2 14.2

kNN-LM (102M, p = 1) 16.7 560.8
kNN-LM (1,024M, p = 1) 14.6 71.1
kNN-LM (1,024M, p = 2) 14.4 45.5
kNN-LM (1,024M, p = 4) 14.2 27.0

Table C.8: Comparison in runtime speed (#
tokens per second) on the validation data of
Wikipedia. p indicates the number of probe,
one of the hyperparameters in fast nearest
neighbor search (p = 8 in all experiments
if not specified otherwise).

the exact L2 distance using the original vectors. However, this may be inefficient in disk memory usage and

run-time speed, due to needing to store large, original vectors and access them on-disk. We thus explore a

few alternatives: (1) quantizing the original vectors to compute the L2 distance (but less aggressively than

quantization for the nearest neighbor search index, thus it provides different levels of approximations for

search and for L2 distance), or (2) completely dropping the original vectors and relying on approximated L2

distance from the index with aggressive quantization.

Table C.7 shows that all approximation methods only marginally affect performance. For this reason, we

use the most aggressive approximation that completely drops the original embeddings at the cost of about

0.5% lose in performance while using < 2% of the memory footprint. Future work may study more accurate

and efficient approximation methods.

Runtime speed. Table C.8 presents the runtime speed of the parametric LM, RIC-LM, and kNN-LM on

the Wikipedia validation set. Speed is reported in tokens per second with a batch size of 1 using a single

NVIDIA RTX 6000 GPU.

The results show that the parametric LM is notably faster than both RIC-LM and kNN-LM, and RIC-LM

is faster than kNN-LM. Speed is slower as the datastore gets larger (for both RIC-LM and kNN-LM) and the

nearest neighbor search gets less accurate (for kNN-LM; indicated by the number of probe p). kNN-LM can
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eventually match RIC-LM’s speed while surpassing its performance by using a smaller datastore and less

accurate search, i.e., when using 102M tokens with p = 1.

However, the machine used for benchmarking has a very slow IO speed, leading to an underestimation

of both RIC-LM and kNN-LM’s runtime speed, and the comparison can significantly vary based on the

hardware. Either way, kNN-LM is currently substantially slower than a parametric LM, leaving room for

potential future improvements.

Qualitative examples. Figure C.9 provides six qualitative examples on the top-1 context retrieved by

SILO-based kNN-LM. The model is able to assign a high probability to the ground truth token by retrieving

highly relevant context, e.g., given the context (hockey) and the first name of the player, being able to

retrieve the last name of the player, given the context (a show and its host), being able to complete the quote.

These examples also highlight that a nonparametric approach addresses specific legal risks that we have

discussed earlier, e.g., it assigns per-token attribution for free, and can provide a copyright notice when part

of copyrighted text is being used for the probability distribution.
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Figure C.2: Comparison between parametric LM, RIC-LM and kNN-LM on five domains, with Pythia (left)
and SILO PDSW (right), respectively. Perplexity on random 128K tokens from the validation data reported.
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Test Prefix
include ‘../lib/admin.defines.php’;
include ‘../lib/admin.module.access.php’;
include ‘../lib/admin.smarty.php’;
if (! has_rights (
Test Continuation ACX_BILLING)) { Header . . .
Retrieved Prefix
(...)
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*
**/
if (! has_rights (
Retrieved Continuation ACX_ACCESS)) { Header ...

Test Prefix
0x5f #define S5K4AA_DEFAULT_BRIGHTNESS 0x10
/******************/
/* Kernel
Test Continuation module parameters */ extern int force_sensor; ...
Retrieved Prefix
* Copyright © 2011-2013 Jozsef Kadlecsik <kadlec@blackhold.kfki.hu>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
/* Kernel
Retrieved Continuation module implementing an IP set type: . . .

Test Prefix . . . Mark or credit about hedge funds? Sara
Sara Shackleton
Enron North America Corp.
[Address]
[Phone number]
[Email address]
— Forwarded by Sara Shacleton/HOU/ECT on 01/2023/2022 05:41PM —
Tana
Test Continuation Jones 12/14/2000
Retrieved Prefix ... Food will be provided! Tana: Please feel free to extend the invitation to any Enron employees who may be interested
in te presentation. 1st come, 1st serve. Thanks, Sylvia. — Forwarded by Sylvia Hu/Corp/Enron on 07/14/2000 03:17PM — Tana
Retrieved Continuation Jones@ECT. 07/13/2000

Test Prefix Ken Lay and Jeff Skilling were interviewed on CNNfn to discuss the succession of Jeff to CEO of Enron. (...) and then choose
“Enron’s Succession Plan.”. The interview will be available every 15 minutes
Test Continuation through Friday, Dec. 15.
Retrieved Prefix Did you miss Jeff on CNBC “Street Signs” yesterday? Not to worry. (...) and then choose > “Skilling CNBC.”. The
interview will be available every ten minutes
Retrieved Continuation through > Wednesday, Dec. 6.

Test Prefix . . . The teams toured the city, explored west Edmonton mall and also got to take in an Oilers practice where they met German
hockey star Leon
Test Continuation Draisaitl
Retrieved Prefix One minute and 19 seconds later, Cannor McDavid took a pass from Leon
Retrieved Continuation Draisaitl

Test Prefix ... Foley on RAW’s run-time issues. Claiming that having the show run so late is one of the reasons why the final hour of RAW
tends to struggle, Foley didn’t end there. “No one else at 10:30pm is a
Test Continuation PG show. I won’t say that across
Retrieved Prefix . . . way to the ring’ podcast Foley cited RAW’s duration and RG rating as hindrances to the show’s popularity. Here’s
what he had to say: “Sometiems we try to look into the reasons why the third hour doesn’t perform as well as the first two, and I’m like ’well
that’s because people go to bed! No one else at 10:30pm is a
Retrieved Continuation PG show. I won’t say that across

Table C.9: Qualitative examples of retrieved context of SILO. Red underlined text indicates the next token
that immediately follows the prefix. The first two are from Github; the next two are from Enron Emails; and
the last two are from CC News.
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